Fenton processes are promising wastewater treatment alternatives for bio-recalcitrant compounds. Three different methods (i.e., reverse microemulsion, sol-gel, and combustion) were designed to synthesize environmentally friendly ferrites as magnetically recoverable catalysts to be applied for the decomposition of two pharmaceuticals (ciprofloxacin and carbamazepine) that are frequently detected in water bodies. The catalysts were used in a heterogeneous solar photo-Fenton treatment to save the cost of applying high-energy UV radiation sources, and was performed under a slightly basic pH to avoid metal leaching and adding salts for pH adjustment. All the developed catalysts resulted in the effective treatment of ciprofloxacin and carbamazepine in both synthetic and real domestic wastewater. In particular, the sol-gel synthesized ferrite was more magnetic and more suitable for reuse. The degradation pathways of both compounds were elucidated for this treatment. The degradation of ciprofloxacin involved attacks to the quinolone and piperazine rings. The degradation pathway of carbamazepine involved the formation of hydroxyl carbamazepine and dihydroxy carbamazepine before yielding acridine by hydrogen abstraction, decarboxylation, and amine cleavage, which would be further oxidized.
- MeSH
- antibakteriální látky chemie MeSH
- chemické látky znečišťující vodu chemie MeSH
- ciprofloxacin chemie MeSH
- karbamazepin chemie MeSH
- katalýza MeSH
- magnetické jevy MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda MeSH
- sluneční záření MeSH
- železité sloučeniny chemie účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.
- MeSH
- Brassica napus metabolismus MeSH
- chloroplasty metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyselina azetidinkarboxylová analogy a deriváty metabolismus MeSH
- spektroskopie Mossbauerova MeSH
- transkriptom MeSH
- železité sloučeniny metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5-20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, and UV-visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-Fe2O3 and γ-Fe2O3), particle size distribution (5-20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m2 g-1 for MG-9 and 207 m2 g-1 for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L-1 due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-Fe2O3 gives a possibility for an easy separation of the catalyst particles after their use.
The presence of iodide (I(-)) in water during disinfection and oxidative treatment of water is a potential health concern because of the formation of iodinated disinfection by-products (DBPs), which may be more toxic than chlorinated DBPs. The kinetics of the oxidation of I(-) by a greener oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was determined as a function of pH. The second-order rate constants (k, M(-1) s(-1)) decreased from 3.9 × 10(4) M(-1) s(-1) at pH 5.0 to 1.2 × 10(1) M(-1) s(-1) at pH 10.3. The kinetics results could be described by the reactivity of monoprotonated species of Fe(VI) (HFe(VI)O4(-)) with I(-). In excess I(-) concentration, triiodide (I3(-)) was formed and the stoichiometry of ∼1:1 ([Fe(VI)]:[I3(-)]) was found in both acidic and basic pH. Ferrate(V) (Fe(V)O4(3-), Fe(V)) and ferrate(IV) (Fe(VI)O4(4-), Fe(IV)) also showed the formation of I3(-) in presence of excess I(-). A mechanism of the formation of I3(-) is proposed, which is consistent with the observed stoichiometry of 1:1. The oxidative treatment of I(-) in water will be rapid (t1/2 = 0.6 s at pH 7.0 using 10 mg L(-1) K2FeO4). The implications of the results and their comparison with the oxidation of I(-) by conventional disinfectants/oxidants in water treatment are briefly discussed.
- MeSH
- chemické látky znečišťující vodu analýza chemie MeSH
- čištění vody metody MeSH
- dezinficiencia MeSH
- halogenace MeSH
- jodidy analýza chemie MeSH
- kinetika MeSH
- oxidace-redukce MeSH
- oxidancia chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios.
MAIN CONCLUSION: Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.
- MeSH
- Cucumis sativus metabolismus ultrastruktura MeSH
- elektronová mikroskopie MeSH
- imunoblotting MeSH
- kořeny rostlin metabolismus ultrastruktura MeSH
- oxidace-redukce MeSH
- sloučeniny železa metabolismus MeSH
- spektroskopie Mossbauerova MeSH
- xylém metabolismus MeSH
- železité sloučeniny metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for azospirilla, low-temperature (at 80 K, 5 K, as well as at 2 K without and with an external magnetic field of 5 T) transmission Mössbauer spectroscopic studies were performed for lyophilised biomass of A. brasilense (wild-type strain Sp7 grown with (57)Fe(III) nitrilotriacetate complex as the sole source of iron) to enable quantitative chemical speciation analysis of the intracellular iron. In the Mössbauer spectrum at 80 K, a broadened quadrupole doublet of high-spin iron(III) was observed with a few percent of a high-spin iron(II) contribution. In the spectrum measured at 5 K, a dominant magnetically split component appeared with the parameters typical of ferritin species from other bacteria, together with a quadrupole doublet of a superparamagnetic iron(III) component and a similarly small contribution from the high-spin iron(II) component. The Mössbauer spectra recorded at 2 K (with or without a 5 T external field) confirmed the assignment of ferritin species. About 20% of total Fe in the dry cells of A. brasilense strain Sp7 were present in iron(III) forms superparamagnetic at both 5 and 2 K, i.e. either different from ferritin cores or as ferritin components with very small particle sizes.
- MeSH
- Azospirillum brasilense chemie metabolismus MeSH
- bakteriální proteiny chemie metabolismus MeSH
- ferritiny chemie metabolismus MeSH
- lyofilizace MeSH
- magnetické jevy MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- spektroskopie Mossbauerova metody MeSH
- železo chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.
- MeSH
- hydroxylový radikál chemie MeSH
- katalýza MeSH
- koloidy chemie MeSH
- minerály chemie MeSH
- nanočástice MeSH
- oxid hlinitý chemie MeSH
- oxid křemičitý chemie MeSH
- oxidace-redukce MeSH
- peroxid vodíku chemie MeSH
- roztoky chemie MeSH
- titan chemie MeSH
- voda chemie MeSH
- železité sloučeniny chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Owing to Mössbauer spectroscopy, an advanced characterization technique for iron-containing materials, the present study reveals previously unknown possibilities using l-amino acids for the generation of magnetic particles. Based on our results, a simple choice of the order of l-amino acids addition into a reaction mixture containing ferrous ions leads to either superparamagnetic ferric oxide/oxyhydroxide particles, or magnetically strong Fe0-Fe2O3/FeOOH core-shell particles after chemical reduction. Conversely, when ferric salts are employed with the addition of selected l-amino acids, only Fe0-Fe2O3/FeOOH core-shell particles are observed, regardless of the addition order. We explain this phenomenon by a specific transient/intermediate complex formation between Fe2+ and l-glutamic acid. This type of complexation prevents ferrous ions from spontaneous oxidation in solutions with full air access. Moreover, due to surface-enhanced Raman scattering spectroscopy we show that the functional groups of l-amino acids are not destroyed during the borohydride-induced reduction. These functionalities can be further exploited for (i) attachment of l-amino acids to the as-prepared magnetic particles, and (ii) for targeted bio- and/or environmental applications where the surface chemistry needs to be tailored and directed toward biocompatible species.
Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3'-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (≈ 10(-2)s(-1)) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10(-8)-10(-6)s(-1)). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.
- MeSH
- chemické bojové látky chemie MeSH
- chemické látky znečišťující vodu chemie MeSH
- cholinesterasové inhibitory chemie MeSH
- čištění vody metody MeSH
- difrakce rentgenového záření MeSH
- mikroskopie elektronová rastrovací MeSH
- nanočástice chemie ultrastruktura MeSH
- organothiofosforové sloučeniny chemie MeSH
- oxidace-redukce MeSH
- prášková difrakce MeSH
- soman chemie MeSH
- yperit chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH