- Publikační typ
- abstrakt z konference MeSH
This observational retrospective study aimed to analyze whether/how the spectrum of bacterial pathogens and their resistance to antibiotics changed during the worst part of the COVID-19 pandemic (1 November 2020 to 30 April 2021) among intensive care patients in University Hospital Olomouc, Czech Republic, as compared with the pre-pandemic period (1 November 2018 to 30 April 2019). A total of 789 clinically important bacterial isolates from 189 patients were cultured during the pre-COVID-19 period. The most frequent etiologic agents causing nosocomial infections were strains of Klebsiella pneumoniae (17%), Pseudomonas aeruginosa (11%), Escherichia coli (10%), coagulase-negative staphylococci (9%), Burkholderia multivorans (8%), Enterococcus faecium (6%), Enterococcus faecalis (5%), Proteus mirabilis (5%) and Staphylococcus aureus (5%). Over the comparable COVID-19 period, a total of 1500 bacterial isolates from 372 SARS-CoV-2-positive patients were assessed. While the percentage of etiological agents causing nosocomial infections increased in Enterococcus faecium (from 6% to 19%, p < 0.0001), Klebsiella variicola (from 1% to 6%, p = 0.0004) and Serratia marcescens (from 1% to 8%, p < 0.0001), there were significant decreases in Escherichia coli (from 10% to 3%, p < 0.0001), Proteus mirabilis (from 5% to 2%, p = 0.004) and Staphylococcus aureus (from 5% to 2%, p = 0.004). The study demonstrated that the changes in bacterial resistance to antibiotics are ambiguous. An increase in the frequency of ESBL-positive strains of some species (Serratia marcescens and Enterobacter cloacae) was confirmed; on the other hand, resistance decreased (Escherichia coli, Acinetobacter baumannii) or the proportion of resistant strains remained unchanged over both periods (Klebsiella pneumoniae, Enterococcus faecium). Changes in pathogen distribution and resistance were caused partly due to antibiotic selection pressure (cefotaxime consumption increased significantly in the COVID-19 period), but mainly due to clonal spread of identical bacterial isolates from patient to patient, which was confirmed by the pulse field gel electrophoresis methodology. In addition to the above shown results, the importance of infection prevention and control in healthcare facilities is discussed, not only for dealing with SARS-CoV-2 but also for limiting the spread of bacteria.
- Publikační typ
- časopisecké články MeSH
Due to the extensive use of antimicrobial agents in human and veterinary medicine, residues of various antimicrobials get into wastewater and, subsequently, surface water. On the one hand, a combination of processes in wastewater treatment plants aims to eliminate chemical and biological pollutants; on the other hand, this environment may create conditions suitable for the horizontal transfer of resistance genes and potential selection of antibiotic-resistant bacteria. Wastewater and surface water samples (Morava River) were analyzed to determine the concentrations of 10 antibiotics and identify those exceeding so-called predicted no-effect environmental concentrations (PNECs). This study revealed that residues of five of the tested antimicrobials, namely ampicillin, clindamycin, tetracycline, tigecycline and vancomycin, in wastewater samples exceeded the PNEC. Vancomycin concentrations were analyzed with respect to the detected strains of vancomycin-resistant enterococci (VRE), in which the presence of resistance genes, virulence factors and potential relationship were analyzed. VRE were detected in 16 wastewater samples (11%) and two surface water samples (6%). The PNEC of vancomycin was exceed in 16% of the samples. Since the detected VRE did not correlate with the vancomycin concentrations, no direct relationship was confirmed between the residues of this antimicrobials and the presence of the resistant strains.
- Publikační typ
- časopisecké články MeSH
Broad-spectrum antibiotics administered to patients with severe COVID-19 pneumonia pose a risk of infection caused by Clostridioides difficile. This risk is reduced mainly by strict hygiene measures and early de-escalation of antibiotic therapy. Recently, oral vancomycin prophylaxis (OVP) has also been discussed. This retrospective study aimed to assess the prevalence of C. difficile in critical COVID-19 patients staying in an intensive care unit of a tertiary hospital department of anesthesiology, resuscitation, and intensive care from November 2020 to May 2021 and the rates of vancomycin-resistant enterococci (VRE) after the introduction of OVP and to compare the data with those from controls in the pre-pandemic period (November 2018 to May 2019). During the COVID-19 pandemic, there was a significant increase in toxigenic C. difficile rates to 12.4% of patients, as compared with 1.6% in controls. The peak rates were noted in February 2021 (25% of patients), immediately followed by initiation of OVP, changes to hygiene precautions, and more rapid de-escalation of antibiotic therapy. Subsequently, toxigenic C. difficile detection rates started to fall. There was a nonsignificant increase in VRE detected in non-gastrointestinal tract samples to 8.9% in the COVID-19 group, as compared to 5.3% in the control group. Molecular analysis confirmed mainly clonal spread of VRE.
- Publikační typ
- časopisecké články MeSH
Bacterial infections are an important cause of mortality and morbidity in newborns. The main risk factors include low birth weight and prematurity. The study identified the most common bacterial pathogens causing neonatal infections including their resistance to antibiotics in the Neonatal Department of the University Hospital Olomouc. Additionally, the cut-off for distinguishing early- from late-onset neonatal infections was assessed. The results of this study show that a cut-off value of 72 h after birth is more suitable. Only in case of early-onset infections arising within 72 h of birth, initial antibiotic therapy based on gentamicin with ampicillin or amoxicillin/clavulanic acid may be recommended. It has been established that with the 72-h cut-off, late-onset infections caused by bacteria more resistant to antibiotics may be detected more frequently, a finding that is absolutely crucial for antibiotic treatment strategy.
- Publikační typ
- časopisecké články MeSH
The article describes activities of an antibiotic center at a university hospital in the Czech Republic and presents the results of antibiotic stewardship program implementation over a period of 10 years. It provides data on the development of resistance of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to selected antibiotic agents as well as consumption data for various antibiotic classes. The genetic basis of resistance to beta-lactam antibiotics and its clonal spread were also assessed. The study showed significant correlations between aminoglycoside consumption and resistance of Escherichia coli and Klebsiella pneumoniae to gentamicin (r = 0.712, r = 0.869), fluoroquinolone consumption and resistance of Klebsiella pneumoniae to ciprofloxacin (r = 0.896), aminoglycoside consumption and resistance of Pseudomonas aeruginosa to amikacin (r = 0.716), as well as carbapenem consumption and resistance of Pseudomonas aeruginosa to meropenem (r = 0.855). Genotyping of ESBL- positive isolates of Klebsiella pneumoniae and Escherichia coli showed a predominance of CTX-M-type; in AmpC-positive strains, DHA, EBC and CIT enzymes prevailed. Of 19 meropenem-resistant strains of Klebsiella pneumoniae, two were identified as NDM-positive. Clonal spread of these strains was not detected. The results suggest that comprehensive antibiotic stewardship implementation in a healthcare facility may help to maintain the effectiveness of antibiotics against bacterial pathogens. Particularly beneficial is the work of clinical microbiologists who, among other things, approve administration of antibiotics to patients with bacterial infections and directly participate in their antibiotic therapy.
- Publikační typ
- časopisecké články MeSH
Cronobacter spp. have been recognized as causative agents of various severe infections in pre-term or full-term infants as well as elderly adults suffering from serious underlying disease or malignancy. A surveillance study was designed to identify antibiotic resistance among clinical Cronobacter spp. strains, which were isolated from patients of two hospitals between May 2007 and August 2013. Altogether, 52 Cronobacter spp. isolates were analyzed. Although MALDI-TOF mass spectrometry recognized all Cronobacter sakazakii and Cronobacter malonaticus strains, it could not identify Cronobacter muytjensii strain. Nevertheless, all strains were identified as Cronobacter spp. using multilocus sequence typing (MLST). Strains were tested against 17 types of antibiotics, using the standard microdilution method according to the 2018 European Committee on Antimicrobial Susceptibility Testing criteria. Three Cronobacter species were identified as C. sakazakii (n = 33), C. malonaticus (n = 18), and C. muytjensii (n = 1); all isolates were susceptible to all tested antibiotics. All strains were PCR-negative for blaTEM, blaSHV, and blaCTX-M β-lactamase genes, as well. Even though the results of this study showed that Cronobacter spp. isolates were pan-susceptible, continued antibiotic resistance surveillance is warranted.Cronobacter spp. have been recognized as causative agents of various severe infections in pre-term or full-term infants as well as elderly adults suffering from serious underlying disease or malignancy. A surveillance study was designed to identify antibiotic resistance among clinical Cronobacter spp. strains, which were isolated from patients of two hospitals between May 2007 and August 2013. Altogether, 52 Cronobacter spp. isolates were analyzed. Although MALDI-TOF mass spectrometry recognized all Cronobacter sakazakii and Cronobacter malonaticus strains, it could not identify Cronobacter muytjensii strain. Nevertheless, all strains were identified as Cronobacter spp. using multilocus sequence typing (MLST). Strains were tested against 17 types of antibiotics, using the standard microdilution method according to the 2018 European Committee on Antimicrobial Susceptibility Testing criteria. Three Cronobacter species were identified as C. sakazakii (n = 33), C. malonaticus (n = 18), and C. muytjensii (n = 1); all isolates were susceptible to all tested antibiotics. All strains were PCR-negative for blaTEM, blaSHV, and blaCTX-M β-lactamase genes, as well. Even though the results of this study showed that Cronobacter spp. isolates were pan-susceptible, continued antibiotic resistance surveillance is warranted.
- MeSH
- antibakteriální látky farmakologie MeSH
- Cronobacter sakazakii klasifikace účinky léků genetika MeSH
- Cronobacter klasifikace účinky léků MeSH
- genotyp MeSH
- gramnegativní bakteriální infekce mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence MeSH
- multilokusová sekvenční typizace MeSH
- polymerázová řetězová reakce MeSH
- techniky typizace bakterií MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- bakteriální léková rezistence * MeSH
- Escherichia coli účinky léků MeSH
- kovové nanočástice chemie MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- stabilita léku MeSH
- stříbro * chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Východiska: Akutní leukemie (AL) je heterogenní skupina maligních onemocnění hematopoézy, rozděluje se na dva základní typy, a to akutní myeloidní leukemie (AML) a akutní lymfoidní leukemie (ALL). Pacienti s těmito onemocněními patří mezi těžce imunosuprimované a je u nich velké riziko vzniku závažných infekcí. Cílem studie bylo sledování výskytu enterobakterií - původců těchto infekcí - u pacientů s AL hospitalizovanými na Hemato-onkologické klinice Fakultní nemocnice v Olomouci a zjištění jejich antibiotické rezistence. Materiál a metodika: Do studie bylo zapojeno 49 pacientů s AL, z toho 37 s AML (16 žen a 21 mužů) a 12 s ALL (6 žen a 6 mužů); průměrný věk pacientů byl 50,5 roku. V průběhu 12 měsíců (od září 2015 do srpna 2016) by od těchto pacientů získávány vzorky klinického materiálu, které byly podrobeny základnímu mikrobiologickému vyšetření. Bakteriální kmeny byly identifikovány pomocí MALDI-TOF MS. Citlivost na antibiotika byla stanovena pomocí mikrodiluční metody. Výsledky: Celkově bylo od pacientů s AL získáno 292 vzorků, které byly dále podrobeny selekci na základě několika kritérií, aby bylo zamezeno zahrnutí identických kmenů získaných od téhož pacienta. Výsledkem byl výběr 146 klinických vzorků z 9 typů klinických materiálů (47x výtěr z krku, 40x stolice, 33x moč, 11x hemokultura, 5x výtěr z dutiny ústní, 4x perianální stěr, 3x; stěr z rány, 2x sputum, 1x punktát). Nejvíce prevalentní enterobakterií byla Escherichia coli (42x), dále zástupci Klebsiella spp. (46x), a to Klebsiella pneumoniae (34x) a Klebsiella oxytoca (12x), a Enterobacter cloacae (19x). Mnohé izoláty vykazovaly rezistenci na testovaná antibiotika. Závěr: Pacienti s hematoonkologickými onemocněními jsou kolonizováni rezistentními enterobakteriemi, což pro ně představuje potenciální nebezpečí vzniku závažných infekcí. Obecně je výskyt těchto rezistentních zástupců z čeledi Enterobacteriaceae v dnešní době závažným problémem se zvyšujícím se výskytem. Tato fakta a vysoká imunosuprese jsou faktory, které hematoonkologické pacienty řadí do zvlášť ohrožené skupiny, v níž je aktivní surveillance naprosto klíčová.
Background: Acute leukemia (AL) is a heterogeneous group of malignant hematopoietic diseases and is divided into two basic types: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Patients with these diseases are highly immunosuppressed and therefore at a high risk of serious infections. This study aimed to perform active surveillance of enterobacteria, which cause these infections, and to determine their antibiotic resistance in patients with AL who were hospitalized at the Hemato-Oncology Center of University Hospital Olomouc. Materials and methods: This study involved 49 patients with AL, of whom 37 had AML (16 women and 21 men) and 12 had ALL (6 women and 6 men). The mean age of the patients was 50.5 years. Samples of clinical material were obtained over 12 months (September 2015 to August 2016) and subjected to standard microbiological examinations. Bacterial strains were identified by MALDI-TOF MS, and their antibiotic susceptibility was established by microdilution method. Results: A total of 292 samples were obtained from patients with AL. Some of these samples were excluded from analysis to prevent the inclusion of identical strains from the same patient. Consequently, 146 clinical samples obtained from the following nine types of clinical materials were analyzed - throat swabs (n = 47), stools (n = 40), urine (n = 33), hemocultures (n = 11), buccal swabs (n = 5), perianal swabs (n = 4), wound swabs (n = 3), sputum (n = 2), and puncture fluid (n = 1). The most prevalent enterobacteria was Escherichia coli (n = 42), followed by Klebsiella spp. (n = 46), specifically Klebsiella pneumoniae (n = 34) and Klebsiella oxytoca (n = 12), and Enterobacter cloacae (n = 19). The most of enterobacteria were highly resistant to many tested antibiotics. Conclusions: Antibiotic-resistant enterobacteria colonize patients with hemato-oncological diseases and can cause serious infections. These antibiotic-resistant microorganisms are a serious and frequent problem. These findings together with the high level of immunosuppression mean that patients with hemato-oncological diseases are at a high risk of developing serious infections and consequently active surveillance is crucial.
- MeSH
- akutní lymfatická leukemie * komplikace mikrobiologie MeSH
- akutní myeloidní leukemie * komplikace mikrobiologie MeSH
- antibakteriální látky klasifikace škodlivé účinky terapeutické užití MeSH
- bakteriální léková rezistence * účinky léků MeSH
- dospělí MeSH
- Enterobacteriaceae * klasifikace patogenita MeSH
- Escherichia coli patogenita MeSH
- infekce spojené se zdravotní péčí mikrobiologie patologie prevence a kontrola MeSH
- Klebsiella patogenita MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- výzkum MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
The study aimed to determine the occurrence of Enterobacteriaceae producing broad-spectrum beta-lactamases, vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus strains in poultry in Moravia, Czech Republic, including phenotypic and genotypic analyses of the extent of resistance. Using chromogenic screening media, a total of 240 clinical samples collected from poultry and the poultry farm environment were processed. Phenotypic tests identified 23 isolates of broad-spectrum beta-lactamase-producing Escherichia coli and one VRE isolate (Enterococcus faecium with VanA resistance). Methicillin-resistant Staphylococcus aureus strains were not detected. Among the isolates producing broad-spectrum beta-lactamases, 17 produced extended-spectrum beta-lactamases, most frequently CTX-M; the remaining 6 isolates were CIT-type AmpC enzymes. No carbapenemase-producing strains were detected. Pulsed-field gel electrophoresis showed that 21 E. coli strains (91%) were genetically unrelated isolates. Increasing resistance of bacteria to antibiotic agents poses a serious issue for both human and veterinary medicine globally. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. The presented study extends existing knowledge about the occurrence of resistant bacteria in poultry in Moravia and describes the phenotype and genotype of their resistance to antibiotics.
- MeSH
- bakteriální léková rezistence * MeSH
- beta-laktamasy * analýza škodlivé účinky MeSH
- drůbež * mikrobiologie MeSH
- drůbeží výrobky * mikrobiologie škodlivé účinky MeSH
- enterokoky rezistentní vůči vankomycinu patogenita MeSH
- Escherichia coli * genetika izolace a purifikace patogenita MeSH
- kontaminace potravin MeSH
- methicilin rezistentní Staphylococcus aureus MeSH
- mikrobiologické techniky MeSH
- výzkum MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Geografické názvy
- Česká republika MeSH