Diagnosis of SARS-CoV-2 virus is mainly based on direct detection. Determination of specific antibodies has been used mostly for epidemiological reasons. However, select immunoassays showed good correlation to plaque reduction virus neutralization test (PRNT) in smaller patient cohorts, which suggests their potential as predictors of virus neutralization titer. A total of 3,699 samples from Covid-19 patients were included in the multicentric study performed in the Czech Republic. Anti-SARS-CoV-2 antibody levels were evaluated by 8 commercial antibody assays. Simultaneously, PRNT evaluations were performed with the SARS-CoV-2 B.1.258 variant. All immunoassays showed an overall high true positive diagnostic value ranging from 79.17 to 98.04%. Several commercial EIA methods showed highly positive correlation between the assay results and PRNT levels, e.g., Liaison CoV-2 TrimericS IgG DiaSorin (Spearman r = 0.8833; Architect SASRS-CoV-2 IgG Abbott (r = 0.7298); NovaLisa SARS-CoV-2 IgG NovaTec (r = 0.7103) and Anti-SARS-CoV-2 ELISA IgG Euroimmun (r = 0.7094). While this correlation was less positive for other assays, those, conversely, presented higher true positive values. For most immunoassays, the positive percent agreement of the results was ≥ 95% in sera exhibiting PRNT levels of 1:80 and higher. The assays tested have shown variable correlation to PRNT. Those possessing high positive predictive values serve well as qualitative tests, while others can be utilised as quantitative tests highly predictive of neutralization antibody levels.
Tick-borne encephalitis (TBE) is a severe neuroinfection of humans. Dogs are also commonly infected with tick-borne encephalitis virus (TBEV). These infections are usually asymptomatic, but sometimes show clinical signs similar to those seen in humans and can be fatal. To date, there is no TBEV vaccine available for use in dogs. To address this need, a TBEV vaccine candidate for dogs based on inactivated whole virus antigen was developed. The safety, immunogenicity, and efficacy of the vaccine candidate were tested in mice as the preclinical model and in dogs as the target organism. The vaccine was well tolerated in both species and elicited the production of specific anti-TBEV antibodies with virus neutralising activity. Vaccination of mice provided complete protection against the development of fatal TBE. Immunisation of dogs prevented the development of viremia after challenge infection. Therefore, the developed vaccine candidate is promising to protect dogs from severe TBEV infections.
- MeSH
- imunizace MeSH
- klíšťová encefalitida * prevence a kontrola veterinární MeSH
- lidé MeSH
- myši MeSH
- protilátky virové MeSH
- psi MeSH
- vakcinace MeSH
- virové vakcíny * MeSH
- viry klíšťové encefalitidy * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.
- MeSH
- antivirové látky farmakologie chemie MeSH
- COVID-19 * MeSH
- kočky MeSH
- perylen * farmakologie MeSH
- reaktivní formy kyslíku MeSH
- SARS-CoV-2 MeSH
- singletový kyslík MeSH
- virion MeSH
- virový obal MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- hydroxid hlinitý MeSH
- imunogenicita vakcíny MeSH
- lidé MeSH
- myši MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- virové vakcíny * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) is an arbovirus that causes severe infections in humans, and is endemic to large areas of Europe and Asia. Humans most commonly become infected with TBEV after a tick bite; however, alimentary infection can occur after consumption of unpasteurized dairy products. Milk from sheep and goats can be a source of alimentary TBE infections. In addition, sheep and goats are considered suitable sentinels for surveillance of TBEV-associated risks in endemic areas. Here we conducted a serological survey to determine the prevalence of TBEV infection among sheep and goats in the Czech Republic. In 2019-2020, a total of 310 serum samples were collected from sheep and 418 from goats, in 11 of the 14 administrative districts of the country. Sera were tested for the presence of TBEV-specific IgG by ELISA, and suspected results were validated using a virus neutralization test. Positive samples were identified in 56.7% of goat farms, and 82.4% of sheep farms, and in 9 of the 11 administrative districts examined. The seroprevalence was significantly higher among sheep (32.5%) than goats (19.7%) (p < 0.001). The present results indicate that sheep and goats have a relatively high rate of exposure to TBEV-infected ticks in most of the administrative districts of the Czech Republic. These findings confirm the usefulness of serological testing in small ruminants to determine and monitor the risk of TBEV infection in humans.
- MeSH
- klíšťová encefalitida * epidemiologie veterinární MeSH
- kozy MeSH
- lidé MeSH
- ovce MeSH
- protilátky virové MeSH
- séroepidemiologické studie MeSH
- viry klíšťové encefalitidy * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The presence of a non-structural protein 1 (NS1) in tick-borne encephalitis (TBE) vaccines and the possible induction of an NS1-specific immune response in vaccinated individuals remains a somewhat controversial topic. Previously, we detected the presence of NS1 in the Encepur TBE vaccine by mass spectrometry and found the induction of NS1-specific IgG antibodies in mice vaccinated with the FSME-Immun TBE vaccine. Here, in this follow-up study, we examined the dynamics and extent of the NS1-specific IgG response in mice vaccinated with these two vaccines in more detail and compared it with the IgG response to the whole virus (WV). Mice were vaccinated at two-week intervals with a total of six doses of each vaccine, and levels of IgG antibodies to TBE virus WV and NS1 were measured by ELISA after each dose. Both vaccines elicited a robust anti-WV IgG response after two doses. The Encepur vaccine did not elicit NS1-specific IgG even after all six doses. In contrast, the FSME-Immun vaccine triggered the production of NS1-specific IgG after four doses. The results indicate that FSME-Immun is the only vaccine that elicits an NS1-specific antibody response in mice. However, compared to WV-specific IgG, the NS1-specific response is weaker, and a higher number of doses is required to induce detectable levels of NS1-specific IgG antibodies.
- Publikační typ
- časopisecké články MeSH
Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 μM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.
- MeSH
- antigeny virové metabolismus MeSH
- antivirové látky chemická syntéza farmakologie MeSH
- buněčné linie MeSH
- glukosidy farmakologie MeSH
- lignany chemická syntéza farmakologie MeSH
- replikace viru účinky léků MeSH
- vakuolární protonové ATPasy antagonisté a inhibitory MeSH
- viabilita buněk účinky léků MeSH
- viry klasifikace účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.
- MeSH
- angiotensin konvertující enzym 2 chemie genetika metabolismus MeSH
- antigenní drift a shift MeSH
- COVID-19 virologie MeSH
- farmakoterapie COVID-19 MeSH
- glykoprotein S, koronavirus genetika imunologie metabolismus MeSH
- imunodominantní epitopy imunologie MeSH
- kinetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- monoklonální protilátky imunologie terapeutické užití MeSH
- mutace MeSH
- myši MeSH
- neutralizační testy MeSH
- plíce patologie MeSH
- protinádorové látky imunologicky aktivní imunologie terapeutické užití MeSH
- SARS-CoV-2 genetika imunologie izolace a purifikace MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hantaviruses are zoonotic pathogens that can cause subclinical to lethal infections in humans. In Europe, five orthohantaviruses are present in rodents: Myodes-associated Puumala orthohantavirus (PUUV), Microtus-associated Tula orthohantavirus, Traemmersee hantavirus (TRAV)/ Tatenale hantavirus (TATV)/ Kielder hantavirus, rat-borne Seoul orthohantavirus, and Apodemus-associated Dobrava-Belgrade orthohantavirus (DOBV). Human PUUV and DOBV infections were detected previously in Lithuania, but the presence of Microtus-associated hantaviruses is not known. For this study we screened 234 Microtus voles, including root voles (Microtus oeconomus), field voles (Microtus agrestis) and common voles (Microtus arvalis) from Lithuania for hantavirus infections. This initial screening was based on reverse transcription-polymerase chain reaction (RT-PCR) targeting the S segment and serological analysis. A novel hantavirus was detected in eight of 79 root voles tentatively named "Rusne virus" according to the capture location and complete genome sequences were determined. In the coding regions of all three genome segments, Rusne virus showed high sequence similarity to TRAV and TATV and clustered with Kielder hantavirus in phylogenetic analyses of partial S and L segment sequences. Pairwise evolutionary distance analysis confirmed Rusne virus as a strain of the species TRAV/TATV. Moreover, we synthesized the entire nucleocapsid (N) protein of Rusne virus in Saccharomyces cerevisiae. We observed cross-reactivity of antibodies raised against other hantaviruses, including PUUV, with this new N protein. ELISA investigation of all 234 voles detected Rusne virus-reactive antibodies exclusively in four of 79 root voles, all being also RNA positive, but not in any other vole species. In conclusion, the detection of Rusne virus RNA in multiple root voles at the same trapping site during three years and its absence in sympatric field voles suggests root voles as the reservoir host of this novel virus. Future investigations should evaluate host association of TRAV, TATV, Kielder virus and the novel Rusne virus and their evolutionary relationships.
- MeSH
- Arvicolinae * MeSH
- druhová specificita MeSH
- genom virový * MeSH
- hantavirové infekce epidemiologie veterinární virologie MeSH
- Hantavirus klasifikace genetika izolace a purifikace MeSH
- nemoci hlodavců epidemiologie virologie MeSH
- prevalence MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Litva MeSH