The antioxidant activity of Scorzonera parviflora Jacq. roots were assessed by measuring their ability to scavenge ABTS and DPPH radicals. Bioactivity-guided fractionation was utilized to identify the compound(s) responsible for this activity. The most active phase, ethyl acetate, was isolated using column chromatography. The resulting fractions were then purified using preparative TLC on reverse phase and semi-preparative HPLC. The structures of the pure compounds were elucidated by spectral analysis (MS and 1H, 13C, 2D-NMR). Three undescribed phenolic acid derivatives, namely parvifloric acid A (1), B (2), and C (3), and one new sesquiterpene lactone, parviflorin (4) together with seven known compounds were isolated and identified as scopolin (5), scopoletin (6), caffeic acid (7), protocatechuic acid (8), 4,5-O-dicaffeoylquinic acid (9) 3,5-O-dicaffeoylquinic acid (10), and 3,5-O-dicaffeoylquinic acid methyl ester (11). Finally, the pure compounds obtained were tested to evaluate their antioxidant capacities, using ABTS and DPPH radical scavenging potencies. The highest activity was observed with 3,5-O-dicaffeoylquinic acid (10), followed by its methyl ester.
- MeSH
- antioxidancia * farmakologie izolace a purifikace chemie MeSH
- fytonutrienty farmakologie izolace a purifikace MeSH
- hydroxybenzoáty * izolace a purifikace farmakologie chemie MeSH
- kořeny rostlin * chemie MeSH
- molekulární struktura MeSH
- Scorzonera * chemie MeSH
- seskviterpeny farmakologie izolace a purifikace chemie MeSH
- Publikační typ
- časopisecké články MeSH
Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.
- MeSH
- antioxidancia analýza izolace a purifikace MeSH
- benzaldehydy analýza izolace a purifikace MeSH
- cinnamáty analýza izolace a purifikace MeSH
- flavonoidy analýza izolace a purifikace MeSH
- hmotnostní spektrometrie metody MeSH
- hydroxybenzoáty analýza izolace a purifikace MeSH
- lidé MeSH
- med analýza MeSH
- metabolom * MeSH
- metabolomika metody MeSH
- senzitivita a specificita MeSH
- správnost dat MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Geografické názvy
- Polsko MeSH
- Řecko MeSH
The phenolic composition, as well as the antioxidant and antimicrobial activities of two poorly investigated Achillea species, Achillea lingulata Waldst. and the endemic Achillea abrotanoides Vis., were studied. To obtain a more detailed phytochemical profile, four solvents with different polarities were used for the preparation of the plant extracts whose phenolic composition was analyzed using UHPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrometry). The results indicate that both of the investigated Achillea species are very rich in both phenolic acids and flavonoids, but that their profiles differ significantly. Chloroform extracts from both species had the highest yields and were the most chemically versatile. The majority of the examined extracts showed antimicrobial activity, while ethanolic extracts from both species were potent against all tested microorganisms. Furthermore, the antioxidant activity of the extracts was evaluated. It was found that the ethanolic extracts possessed the strongest antioxidant activities, although these extracts did not contain the highest amounts of detected phenolic compounds. In addition, several representatives of phenolic compounds were also assayed for these biological activities. Results suggest that ethanol is a sufficient solvent for the isolation of biologically active compounds from both Achillea species. Moreover, it was shown that the flavonoids naringenin and morin are mainly responsible for these antimicrobial activities, while caffeic, salicylic, chlorogenic, p-coumaric, p-hydroxybenzoic, and rosmarinic acid are responsible for the antioxidant activities of the Achillea extracts.
- MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- antioxidancia chemie izolace a purifikace farmakologie MeSH
- bifenylové sloučeniny antagonisté a inhibitory MeSH
- druhová specificita MeSH
- fenoly chemie izolace a purifikace farmakologie MeSH
- flavonoidy chemie izolace a purifikace farmakologie MeSH
- fytonutrienty chemie izolace a purifikace farmakologie MeSH
- hydroxybenzoáty chemie izolace a purifikace farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- pikráty antagonisté a inhibitory MeSH
- řebříček chemie klasifikace MeSH
- rostlinné extrakty chemie MeSH
- rozpouštědla MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
Here we report the comprehensive characterization of the secondary metabolites from the leaves of Colebrookea oppositifolia Smith, a species used as medicinal plant in the traditional medicine of Nepal. Phytochemical screening of bioactives was performed using an integrated LC-MSn and high resolution MS (Mass Spectrometry) approach. Forty-three compounds were tentatively identified, mainly aglyconic and glycosilated flavonoids and phenolic acids, as well as other bioactives such as coumarins and terpenes were detected. Furthermore, the NF-κB and AP-1 inhibitory activity of C. oppositifolia extract were evaluated, as well as its cytotoxicity against THP-1 cells, in order to assess the potential use of this herb as a source of anti-inflammatory and cytotoxic compounds. The results so far obtained indicate that C. oppositifolia leaves extract could significantly reduce the viability of THP-1 cells (IC50 = 6.2 ± 1.2 µg/mL), as well as the activation of both NF-κB and AP-1 at the concentration of 2 μg/mL. Our results indicate that Nepalese C. oppositifolia is a valuable source of anti-inflammatory and cytotoxic compounds. The phytochemical composition reported here can partially justify the traditional uses of C. oppositifolia in Nepal, especially in the treatment of inflammatory diseases, although further research will be needed to assess the full potential of this species.
- MeSH
- antiflogistika izolace a purifikace farmakologie toxicita MeSH
- chromatografie kapalinová MeSH
- flavonoidy analýza izolace a purifikace MeSH
- hluchavkovité metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hydroxybenzoáty analýza izolace a purifikace MeSH
- léčivé rostliny metabolismus MeSH
- lidé MeSH
- listy rostlin metabolismus MeSH
- metabolom MeSH
- methanol MeSH
- NF-kappa B antagonisté a inhibitory MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie toxicita MeSH
- THP-1 buňky MeSH
- transkripční faktor AP-1 antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nepál MeSH
A monolithic sulfobetaine polymethacrylate micro-column BIGDMA-MEDSA designed in our laboratory, shows dual retention mechanism: In acetonitrile-rich mobile phase, hydrophilic interactions control the retention (HILIC system), whereas in more aqueous mobile phases the column shows essentially reversed-phase behavior with major role of hydrophobic interactions. The zwitterionic polymethacrylate micro-column can be used in the first dimension of two-dimensional LC in alternating reversed-phase (RP) and HILIC modes, coupled with an alkyl-bonded core-shell or silica-based monolithic column in the second dimension, for HILIC×RP and RP×RP comprehensive two-dimensional separations. During the HILIC×RP period, a gradient of decreasing acetonitrile gradient is used for separation in the first dimension, so that at the end of the gradient the polymeric monolithic micro-column is equilibrated with a highly aqueous mobile phase and is ready for repeated sample injection, this time for separation under reversed-phase gradient conditions with increasing concentration of acetonitrile in the first dimension. The fast repeating reversed-phase gradients on a short silica-monolithic or core-shell column in the second dimension can be optimized independently of the actual running first-dimension gradient program. As the alternating HILIC and RP separations on the first-dimension zwitterionic methacrylate column are based on complementary retention mechanisms, the instrumental setup essentially represents two coupled two-dimensional systems. It is first time that such an automated dual LCxLC approach is reported. The novel system allows obtaining three-dimensional data in a relatively short time and can be applied not only to multidimensional gradient separations of flavones and related polyphenolic compounds.
- MeSH
- acetonitrily MeSH
- betain analogy a deriváty MeSH
- chromatografie kapalinová přístrojové vybavení metody MeSH
- chromatografie s reverzní fází přístrojové vybavení metody MeSH
- flavony izolace a purifikace MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybenzoáty izolace a purifikace MeSH
- kyseliny polymethakrylové * MeSH
- oxid křemičitý * MeSH
- rozpouštědla MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
Four linear diaminoalkanes (1,2-diaminoethane, 1,4-diaminobutane, 1,6-diaminohexane, and 1,8-diaminooctane) have been used to hypercrosslink poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic stationary phases by nucleophilic substitution reaction. The column efficiency of polymer monoliths improved with longer diaminoalkane with 1,8-diaminoctane providing the highest efficiency. The concentration of 1,8-diaminoctane, together with hypercrosslinking time and temperature has been optimized. To improve the permeability of prepared columns, the hypercrosslinking modification has been combined with an early termination of polymerization reaction and decrease in polymerization temperature. The optimal column has been prepared by a polymerization reaction for 2h at 65°C and hypercrosslinked in the presence of 3% 1,8-diaminooctane for 2h at 95°C. The repeatability study of the presented protocol provided relative standard deviation for nine columns prepared independently out of three individual polymerization mixtures in between 2.0-12.0% for retention factors and 1.5-6.5% for plate heights, respectively. Further, we have modified residual chloromethyl groups with 2-aminoethanesulfonic acid (taurine) to prepare monolithic columns suitable for separation of small polar molecules in hydrophilic interaction chromatography. The highest retention of polar thiourea showed the column modified at 70°C for 20 h. Taurine-modified hypercrosslinked column showed the minimum of van Deemter curve of 20 μm. The prepared column provided dual-retention mechanism, including hydrophilic interaction and reversed-phase liquid chromatography that can be controlled by the composition of the mobile phase. The prepared column has been successfully used for an isocratic separation of low-molecular phenolic acids.
- MeSH
- chromatografie s reverzní fází metody MeSH
- diaminy chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybenzoáty izolace a purifikace MeSH
- polymerizace MeSH
- polymery chemie MeSH
- putrescin chemie MeSH
- reagencia zkříženě vázaná chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effects of mobile phase composition and of temperature on the retention behavior of phenolic acids were studied on 4 hydrosilated (type C silica) based columns in buffered aqueous acetonitrile, both in the aqueous normal phase (HILIC) and in the reversed-phase mobile phase range. The UDC cholesterol and the C₁₈ bidentate columns show significant reversed phase and normal-phase retention mechanisms, whereas very weak retention in the reversed-phase mode was observed on the silica hydride and the Diamond hydride columns. The concentration effects of the aqueous acetate buffer over the full mobile phase (HILIC and RP) composition range can be described by a simple four-parameter equation. At increasing temperature, the retention times and peak widths decrease both in the aqueous normal phase and in the reversed phase mobile phase range. Linear van't Hoff log k versus 1/T plots were observed, indicating a single retention mechanism predominating in the highly organic (HILIC), like in highly aqueous (RP) mobile phase ranges. Besides the type of the stationary phase, the separation selectivity of phenolic acids strongly depends on temperature and on the mobile phase composition. From among the 4 hydrosilated columns compared in this work, the UDC cholesterol column has high temperature stability (up to 100 °C) and is most suitable for selective and efficient separations of phenolic acids both in the HILIC and in the RP modes.
- MeSH
- acetonitrily chemie MeSH
- cholesterol chemie MeSH
- chromatografie kapalinová přístrojové vybavení metody MeSH
- chromatografie s reverzní fází MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybenzoáty izolace a purifikace MeSH
- oxid křemičitý chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A 2D method was developed for separation of phenolic acids and flavonoids natural antioxidants combining LC with MEKC. The in-capillary preconcentration step was applied for the improvement of the sensitivity of 2D method before the second dimension MEKC analysis. The influence of first dimension LC mobile phase composition on migration times in the second MEKC dimension was evaluated. When gradient elution is applied in the first dimension of 2D LC-MEKC system, increasing concentration of organic solvent in the mobile phase and in fractions transferred from LC influences the electroosmotic flow, partitioning equilibria of samples in micelles and properties of the micelles, which results in shifts of migration times during the consecutive runs in the second MEKC separation dimension. The shifts of migration times caused by the influence of increasing concentration of ACN on MEKC separation in second dimension of 2D LC-MEKC system were compensated by aligning the time axis using electroosmotic flow and micellar marker migration times. The optimized LC-MEKC method was applied on the separation of natural antioxidants in the plant extracts samples.
- MeSH
- acetonitrily chemie MeSH
- antioxidancia analýza chemie izolace a purifikace MeSH
- chromatografie micelární elektrokinetická kapilární metody MeSH
- flavonoidy analýza chemie izolace a purifikace MeSH
- hydroxybenzoáty analýza chemie izolace a purifikace MeSH
- rostlinné extrakty chemie MeSH
- senzitivita a specificita MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions. In the second dimension, gradients are limited to a short-time period available for separation. Various types of second-dimension gradients in comprehensive LC x LC are compared: (i) "full in fraction", (ii) "segment in fraction" and (iii) "continuously shifting" gradients, applied in orthogonal LC x LC separations of phenolic acids and flavones on a polyethylene glycol column in the first dimension and two types of porous shell fused-core C18 columns in the second dimension (Ascentis Express and Kinetex). The porous shell columns provide narrow bandwidths and fast second-dimension separations at moderate operating pressure that allows important savings of the overall separation time in comprehensive LC x LC separations. The effects of the gradient type on the bandwidths, theoretical peak capacity, separation time and column pressure in the second dimension were investigated. The type of gradient program controls the range of lipophilicity of sample compounds that can be separated in the second-dimension reversed-phase time period. This range can be calibrated using alkylbenzene standards, to design the separation conditions for complete sample separation, avoiding harmful wrap around of non-eluted compounds to the subsequent second-dimension fractions.
A 2-D method was developed for separation of phenolic acids and flavone compounds combining LC with MEKC. The effect of substituted neutral and anionic CD additives to the background electrolyte on the quality of MEKC separation was investigated. The best selectivity of the MEKC separation was achieved in 25 mmol/L borate background buffer at pH 9.05 with the addition of 10 g/L SDS and 1.85 g/L heptakis (6-O-sulfo)-beta-CD. These conditions were used in the second dimension of 2-D combination of LC and MEKC separation in combination with a PEG column in the first dimension, providing the best orthogonality (the lowest degree of correlation between the selectivity of separation) in the two dimensions. A CE autosampler was employed as the interface between LC and MEKC steps based on automated fraction collection before the re-analysis of the collected LC fractions in the second, MEKC dimension. The 2-D method under optimized conditions was applied for the separation of natural antioxidants in the samples of green tea.
- MeSH
- beta-cyklodextriny chemie MeSH
- chromatografie kapalinová metody MeSH
- chromatografie micelární elektrokinetická kapilární metody MeSH
- flavonoidy analýza chemie izolace a purifikace MeSH
- hydroxybenzoáty analýza chemie izolace a purifikace MeSH
- koncentrace vodíkových iontů MeSH
- techniky kombinatorické chemie metody MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH