Environmental risks connected with the combustion of paper/cardboard briquettes are still not sufficiently known. This paper aims to bring attention to the risks related to the utilisation of paper briquettes in local boilers and to characterise these risks by means of the identification of organic compounds in deposits from exhaust flues. The identification of the chemical compounds was performed by pyrolysis gas chromatography with mass spectrometric detection. Paper/cardboard briquettes contain 119 compounds of biogenic origin derived from major biomass components and 53 additives. Additives are used both for improving the properties of paper and in printing inks. By burning the paper briquettes, the same 53 compounds from the additive group were caught in the deposits from the flue gas pathway, occurring in the range of 1-10% of the concentration of individual compounds (additives) contained in the input fuel. Compounds that are very stable during the combustion process have an enrichment factor (EF) >30, which corresponded to approximately 3% of the additive capture in deposits. The highest values were found for plasticisers (phthalates). Many of the primary organic compounds contained in the input raw material do not decompose during combustion and can have adverse effects on human health.
- MeSH
- biomasa MeSH
- lidé MeSH
- organické látky * toxicita MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effect of the structure of organic compounds on the acute toxicity upon oral injection in mice was studied using 2D simplex representation of the molecular structure and Random forest (RF) methods. Satisfactory quantitative structure-activity relationship (QSAR) models were constructed (R2 test = 0,61-0,62). The interpretation of the obtained QSAR models was carried out. The contributions of known toxicophores with established mechanisms of action were calculated in order to confirm the ability of the interpretation approach to correctly rank them relative to other structural fragments. The influence of the molecular surroundings of some toxicophores was analyzed. We analyzed the contributions of other highly ranked fragments from the list of common functional groups and ring systems in order to find new potential toxicophores. The on-line version of the expert system "OCHEM" (https://ochem.eu) and Arithmetic Mean Toxicity (AMT) approach were used for a comparative QSAR study.
Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content.
- MeSH
- benzin analýza toxicita MeSH
- biopaliva analýza toxicita MeSH
- buněčné linie MeSH
- butanoly analýza toxicita MeSH
- ethanol chemie MeSH
- genetická transkripce účinky léků MeSH
- látky znečišťující vzduch analýza toxicita MeSH
- lidé MeSH
- MAP kinasový signální systém účinky léků MeSH
- organické látky chemie toxicita MeSH
- oxidační stres účinky léků MeSH
- pevné částice toxicita MeSH
- plíce účinky léků patologie MeSH
- polycyklické aromatické uhlovodíky analýza toxicita MeSH
- poškození DNA MeSH
- stanovení celkové genové exprese MeSH
- výfukové emise vozidel analýza toxicita MeSH
- zánět chemicky indukované patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Dissolved organic matter (DOM) strongly influences the properties and fate of engineered nanoparticles (ENPs) in aquatic environments. There is an extensive body of experiments on interactions between DOM and ENPs and also larger particles. [We denote particles on the nano- and micrometer scale as particulate matter (PM).] However, the experimental results are very heterogeneous, and a general mechanistic understanding of DOM-PM interactions is still missing. In this situation, recent reviews have called to expand the range of DOM and ENPs studied. Therefore, our work focuses on the diversity of the DOM and PM types investigated. Because the experimental results reported in the literature are highly disparate and difficult to structure, a new format of organizing, visualizing, and interpreting the results is needed. To this end, we perform a network analysis of 951 experimental results on DOM-PM interactions, which enabled us to analyze and quantify the diversity of the materials investigated. The diversity of the DOM-PM combinations studied has mostly been decreasing over the last 25 y, which is driven by an increasing focus on several frequently investigated materials, such as DOM isolated from fresh water, DOM in whole-water samples, and TiO2 and silver PM. Furthermore, there is an underrepresentation of studies into the effect of particle coating on PM-DOM interactions. Finally, it is of great importance that the properties of DOM used in experiments with PM, in particular the molecular weight and the content of aromatic and aliphatic carbon, are reported more comprehensively and systematically.
- MeSH
- chemické látky znečišťující vodu chemie toxicita MeSH
- chemické modely MeSH
- molekulová hmotnost MeSH
- monitorování životního prostředí * MeSH
- nanočástice chemie toxicita MeSH
- organické látky chemie toxicita MeSH
- rozpustnost MeSH
- stříbro chemie MeSH
- uhlík chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Organic friction materials are standardly used in brakes of small planes, railroad vehicles, trucks and passenger cars. The growing transportation sector requires a better understanding of the negative impact related to the release of potentially hazardous materials into the environment. This includes brakes which can release enormous quantities of wear particulates. This paper addresses in vitro detection of toxic and mutagenic potency of one model and two commercially available low-metallic automotive brake pads used in passenger cars sold in the EU market. The model pad made in the laboratory was also subjected to a standardized brake dynamometer test and the generated non-airborne wear particles were also investigated. Qualitative "organic composition" was determined by GC/MS screening of dichloromethane extracts. Acute toxicity and mutagenicity of four investigated sample types were assessed in vitro by bioluminescence assay using marine bacteria Vibrio fischeri and by two bacterial bioassays i) Ames test on Salmonella typhimurium His(-) and ii) SOS Chromotest using Escherichia coli PQ37 strain. Screening of organic composition revealed a high variety of organic compounds present in the initial brake pads and also in the generated non-airborne wear debris. Several detected compounds are classified by IARC as possibly carcinogenic to humans, e. g. benzene derivatives. Acute toxicity bioassay revealed a response of bacterial cells after exposure to all samples used. Phenolic resin and wear debris were found to be acutely toxic; however in term of mutagenicity the response was negative. All non-friction exposed brake pad samples (a model pad and two commercial pad samples) were mutagenic with metabolic activation in vitro.
- MeSH
- automobily MeSH
- Escherichia coli účinky léků genetika MeSH
- fenoly toxicita MeSH
- formaldehyd toxicita MeSH
- karcinogeny MeSH
- kovy chemie toxicita MeSH
- mutageny MeSH
- organické látky chemie toxicita MeSH
- pevné částice toxicita MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- polymery toxicita MeSH
- Salmonella typhimurium účinky léků genetika MeSH
- testy genotoxicity MeSH
- Publikační typ
- časopisecké články MeSH
Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effects of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and the fish embryo toxicity test were applied along with chemical analysis to water extracts from the Danube River. Mixture-toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response, and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation, and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals.
- MeSH
- biotest MeSH
- chemické látky znečišťující vodu analýza toxicita MeSH
- ekotoxikologie metody MeSH
- embryo nesavčí účinky léků MeSH
- NF-kappa B MeSH
- organické látky analýza toxicita MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- receptory pro estrogeny metabolismus MeSH
- řeky chemie MeSH
- ryby embryologie MeSH
- steroidní receptory metabolismus MeSH
- techniky in vitro MeSH
- teoretické modely MeSH
- testy genotoxicity metody MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This review paper presents the overview of processes involved in transformation of organic-coated silver nanoparticles (AgNPs) in biological systems and in the aquatic environment. The coating on AgNPs greatly influences the fate, stability, and toxicity of AgNPs in aqueous solutions, biological systems, and the environment. Several organic-coated AgNP systems are discussed to understand their stability and toxicity in biological media and natural water. Examples are presented to demonstrate how a transformation of organic-coated AgNPs in an aqueous solution is affected by the type of coating, pH, kind of electrolyte (mono- or divalent), ionic strength, organic ligands (inorganic and organic), organic matter (fulvic and humic acids), redox conditions (oxic and anoxic), and light. Results of cytotoxicity, genotoxicity, and ecotoxicity of coated AgNPs to food chain members (plants, bacteria, and aquatic and terrestrial organisms) are reviewed. Key factors contributing to toxicity are the size, shape, surface coating, surface charge, and conditions of silver ion release. AgNPs may directly damage the cell membranes, disrupt ATP production and DNA replication, alternate gene expressions, release toxic Ag(+) ion, and produce reactive oxygen species to oxidize biological components of the cell. A progress made on understanding the mechanism of organic-coated AgNP toxicity using different analytical techniques is presented.
- MeSH
- Bacteria účinky léků MeSH
- buněčná membrána účinky léků MeSH
- DNA účinky léků MeSH
- exprese genu účinky léků MeSH
- kovové nanočástice chemie toxicita MeSH
- lidé MeSH
- organické látky chemie toxicita MeSH
- povrchové vlastnosti MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny účinky léků MeSH
- roztoky MeSH
- stříbro chemie toxicita MeSH
- velikost částic MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited.
- MeSH
- látky znečišťující půdu chemie metabolismus toxicita MeSH
- Oligochaeta chemie účinky léků metabolismus MeSH
- organické látky chemie metabolismus toxicita MeSH
- půda chemie MeSH
- uhlík analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.
- MeSH
- adukty DNA účinky léků MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- geny p53 účinky léků MeSH
- játra účinky léků MeSH
- krysa rodu rattus MeSH
- mutageny toxicita MeSH
- organické látky toxicita MeSH
- pevné částice toxicita MeSH
- polycyklické aromatické uhlovodíky toxicita MeSH
- poškození DNA účinky léků MeSH
- proliferace buněk účinky léků MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Dissolved organic matter (DOM) in freshwaters is present at concentrations ranging from 0.5 to 50 mg L⁻¹, and consists of various organic compounds, including humic substances (HS). HS exert a variety of direct and indirect biological effects, including interaction with the aryl hydrocarbon receptor (AhR). AhR is a cytosolic receptor that binds various hydrophobic organic compounds (HOCs) and mediates some of their toxic effects. In vitro effects of binary mixtures of various DOM (mainly HS) with various HOCs on AhR-mediated responses were studied by use of H4IIE-luc cells. Six out of 12 DOM activated the AhR even at environmentally relevant concentrations (17 mg L⁻¹). In simultaneous exposures of H4IIE-luc cells to DOM (17 mg L⁻¹) and each of the model compounds, 2,3,7,8-TCDD, PCB126, PCB169, benzo[a]pyrene, benzo[a]anthracene, dibenz[a,h]anthracene, fluoranthene, a mixture of persistent organic pollutants (POPs), a mixture of polycyclic aromatic hydrocarbons (PAHs), and a mixture of all HOCs, either significant additive or facilitative effects were observed when compared to activities of single HOCs. No significant decrease of effects due to possible sorption of HOCs to DOM was observed, even in subsequent experiments when HOCs+DOM mixtures were preincubated for six days before exposure to H4IIE-luc. Thus, DOM does not seem to protect organisms against AhR-mediated toxic effects of HOCs (as usually predicted due to sorption of HOCs on DOM), but it can actually enhance their potency for AhR-mediated effects in some situations.
- MeSH
- anthraceny chemie metabolismus toxicita MeSH
- benzopyren chemie metabolismus toxicita MeSH
- fluoreny chemie metabolismus toxicita MeSH
- huminové látky analýza MeSH
- hydrofobní a hydrofilní interakce MeSH
- krysa rodu rattus MeSH
- látky znečišťující životní prostředí chemie metabolismus toxicita MeSH
- nádorové buněčné linie MeSH
- organické látky chemie metabolismus toxicita MeSH
- polychlorované dibenzodioxiny chemie metabolismus toxicita MeSH
- polycyklické aromatické uhlovodíky chemie metabolismus toxicita MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- sladká voda chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH