ML, Machine Learning Dotaz Zobrazit nápovědu
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: Takotsubo syndrome (TTS) is associated with a substantial rate of adverse events. We sought to design a machine learning (ML)-based model to predict the risk of in-hospital death and to perform a clustering of TTS patients to identify different risk profiles. METHODS AND RESULTS: A ridge logistic regression-based ML model for predicting in-hospital death was developed on 3482 TTS patients from the International Takotsubo (InterTAK) Registry, randomly split in a train and an internal validation cohort (75% and 25% of the sample size, respectively) and evaluated in an external validation cohort (1037 patients). Thirty-one clinically relevant variables were included in the prediction model. Model performance represented the primary endpoint and was assessed according to area under the curve (AUC), sensitivity and specificity. As secondary endpoint, a K-medoids clustering algorithm was designed to stratify patients into phenotypic groups based on the 10 most relevant features emerging from the main model. The overall incidence of in-hospital death was 5.2%. The InterTAK-ML model showed an AUC of 0.89 (0.85-0.92), a sensitivity of 0.85 (0.78-0.95) and a specificity of 0.76 (0.74-0.79) in the internal validation cohort and an AUC of 0.82 (0.73-0.91), a sensitivity of 0.74 (0.61-0.87) and a specificity of 0.79 (0.77-0.81) in the external cohort for in-hospital death prediction. By exploiting the 10 variables showing the highest feature importance, TTS patients were clustered into six groups associated with different risks of in-hospital death (28.8% vs. 15.5% vs. 5.4% vs. 1.0.8% vs. 0.5%) which were consistent also in the external cohort. CONCLUSION: A ML-based approach for the identification of TTS patients at risk of adverse short-term prognosis is feasible and effective. The InterTAK-ML model showed unprecedented discriminative capability for the prediction of in-hospital death.
- MeSH
- lidé MeSH
- mortalita v nemocnicích MeSH
- prognóza MeSH
- srdeční selhání * komplikace MeSH
- strojové učení MeSH
- takotsubo kardiomyopatie * diagnóza komplikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
- MeSH
- databáze faktografické MeSH
- lidé MeSH
- registrace * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Práce s big daty vyžaduje použití prostředků umělé inteligence. Přináší to možnost transformace laboratorních výsledků do formy strojového učení-machine learning (ML). Od něho se očekává aktivace dat, přinášející zlepšení diagnostických možností laboratorních vyšetření. Jde o posuv od použití počítačů, sloužících z části jako skladiště mrtvých dat, k aktivnějšímu využití jejich potenciálu pro diagnostiku, management, edukaci, výzkum a další. Zejména pak k predikci stavu chorob a k precizní medicíně v onkologii i jinde. Důsledkem by měl být integrovaný mezioborový přístup k diagnostice a reálné dosažení efektivní personalizace při diagnostice a terapii pacientů. Sdělení je pokusem o pomoc při zavádění práce s big daty a umělou inteligencí v klinických laboratořích. Vychází z faktu obrovské akcelerace tohoto přístupu, zdaleka nejen pouze v laboratorní medicíně.
Working the big data needs using of artificial intelligence tools. This approach introduced currently into practice by large velocity leads to machine learning. Machine learning should be a strong way namely for the prediction of patient's state, for precision medicine in oncology and many more cases. For example for aiming the real personalisation of patients in dese of their diagnosis and therapy. This work can be a helpful tool for the introduction of artificial intelligence in routine clinical laboratories.
The search for non-invasive, fast, and low-cost diagnostic tools has gained significant traction among many researchers worldwide. Dielectric properties calculated from microwave signals offer unique insights into biological tissue. Material properties, such as relative permittivity (εr) and conductivity (σ), can vary significantly between healthy and unhealthy tissue types at a given frequency. Understanding this difference in properties is key for identifying the disease state. The frequency-dependent nature of the dielectric measurements results in large datasets, which can be postprocessed using artificial intelligence (AI) methods. In this work, the dielectric properties of liver tissues in three mouse models of liver disease are characterized using dielectric spectroscopy. The measurements are grouped into four categories based on the diets or disease state of the mice, i.e., healthy mice, mice with non-alcoholic steatohepatitis (NASH) induced by choline-deficient high-fat diet, mice with NASH induced by western diet, and mice with liver fibrosis. Multi-class classification machine learning (ML) models are then explored to differentiate the liver tissue groups based on dielectric measurements. The results show that the support vector machine (SVM) model was able to differentiate the tissue groups with an accuracy up to 90%. This technology pipeline, thus, shows great potential for developing the next generation non-invasive diagnostic tools.
- MeSH
- jaterní cirhóza MeSH
- játra patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * diagnóza patologie MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Narcolepsy is a rare life-long disease that exists in two forms, narcolepsy type-1 (NT1) or type-2 (NT2), but only NT1 is accepted as clearly defined entity. Both types of narcolepsies belong to the group of central hypersomnias (CH), a spectrum of poorly defined diseases with excessive daytime sleepiness as a core feature. Due to the considerable overlap of symptoms and the rarity of the diseases, it is difficult to identify distinct phenotypes of CH. Machine learning (ML) can help to identify phenotypes as it learns to recognize clinical features invisible for humans. Here we apply ML to data from the huge European Narcolepsy Network (EU-NN) that contains hundreds of mixed features of narcolepsy making it difficult to analyze with classical statistics. Stochastic gradient boosting, a supervised learning model with built-in feature selection, results in high performances in testing set. While cataplexy features are recognized as the most influential predictors, machine find additional features, e.g. mean rapid-eye-movement sleep latency of multiple sleep latency test contributes to classify NT1 and NT2 as confirmed by classical statistical analysis. Our results suggest ML can identify features of CH on machine scale from complex databases, thus providing 'ideas' and promising candidates for future diagnostic classifications.
- MeSH
- biologické modely * MeSH
- databáze faktografické statistika a číselné údaje MeSH
- datové soubory jako téma MeSH
- dospělí MeSH
- interpretace statistických dat MeSH
- lidé MeSH
- mladý dospělý MeSH
- narkolepsie klasifikace diagnóza patofyziologie MeSH
- polysomnografie statistika a číselné údaje MeSH
- řízené strojové učení * MeSH
- ROC křivka MeSH
- spánek REM fyziologie MeSH
- spánková latence fyziologie MeSH
- stochastické procesy MeSH
- vzácné nemoci klasifikace diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies-Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
- MeSH
- akutní nemoc MeSH
- kreatinin MeSH
- ledviny fyziologie MeSH
- lidé MeSH
- srdeční selhání * MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Phase-contrast MRI allows detailed measurements of various parameters of CSF motion. This examination is technically demanding and machine dependent. The literature on this topic is ambiguous. Machine learning (ML) approaches have already been successfully utilized in medical research, but none have yet been applied to enhance the results of CSF flowmetry. The aim of this study was to evaluate the possible contribution of ML algorithms in enhancing the utilization and results of MRI flowmetry in idiopathic normal pressure hydrocephalus (iNPH) diagnostics. METHODS: The study cohort consisted of 30 iNPH patients and 15 healthy controls examined on one MRI machine. All major phase-contrast parameters were inspected: peak positive, peak negative, and average velocities; peak amplitude; positive, negative, and average flow rates; and aqueductal area. The authors applied ML algorithms to 85 complex features calculated from a phase-contrast study. RESULTS: The most distinctive parameters with p < 0.005 were the peak negative velocity, peak amplitude, and negative flow. From the ML algorithms, the Adaptive Boosting classifier showed the highest specificity and best discrimination potential overall, with 80.4% ± 2.9% accuracy, 72.0% ± 5.6% sensitivity, 84.7% ± 3.8% specificity, and 0.812 ± 0.047 area under the receiver operating characteristic curve (AUC). The highest sensitivity was 85.7% ± 5.6%, reached by the Gaussian Naive Bayes model, and the best AUC was 0.854 ± 0.028 by the Extra Trees classifier. CONCLUSIONS: Feature extraction algorithms combined with ML approaches simplify the utilization of phase-contrast MRI. The highest-performing ML algorithm was Adaptive Boosting, which showed good calibration and discrimination on the testing data, with 80.4% accuracy, 72.0% sensitivity, 84.7% specificity, and 0.812 AUC. Phase-contrast MRI boosted by the ML approach can help to determine shunt-responsive iNPH patients.
BACKGROUND: Interpretable machine learning (ML) for early detection of cancer has the potential to improve risk assessment and early intervention. METHODS: Data from 261 proteins related to inflammation and/or tumor processes in 123 blood samples collected from healthy persons, but of whom a sub-group later developed squamous cell carcinoma of the oral tongue (SCCOT), were analyzed. Samples from people who developed SCCOT within less than 5 years were classified as tumor-to-be and all other samples as tumor-free. The optimal ML algorithm for feature selection was identified and feature importance computed by the SHapley Additive exPlanations (SHAP) method. Five popular ML algorithms (AdaBoost, Artificial neural networks [ANNs], Decision Tree [DT], eXtreme Gradient Boosting [XGBoost], and Support Vector Machine [SVM]) were applied to establish prediction models, and decisions of the optimal models were interpreted by SHAP. RESULTS: Using the 22 selected features, the SVM prediction model showed the best performance (sensitivity = 0.867, specificity = 0.859, balanced accuracy = 0.863, area under the receiver operating characteristic curve [ROC-AUC] = 0.924). SHAP analysis revealed that the 22 features rendered varying person-specific impacts on model decision and the top three contributors to prediction were Interleukin 10 (IL10), TNF Receptor Associated Factor 2 (TRAF2), and Kallikrein Related Peptidase 12 (KLK12). CONCLUSION: Using multidimensional plasma protein analysis and interpretable ML, we outline a systematic approach for early detection of SCCOT before the appearance of clinical signs.
- MeSH
- jazyk MeSH
- krevní proteiny MeSH
- lidé MeSH
- nádory jazyka * diagnóza MeSH
- spinocelulární karcinom * diagnóza MeSH
- strojové učení MeSH
- ubikvitinligasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH