Protoporphyrin IX
Dotaz
Zobrazit nápovědu
Delayed fluorescence (DF) is a long-lived luminescence process used in a variety of applications ranging from oxygen sensing in biological tissues to organic Light Emitting Diodes. In common cases, DF results from the de-excitation of the first excited triplet state via the first excited singlet state of the chromophore, which produces a mono-exponential light signal whose amplitude and lifetime give an insight into the probed environment. However, non-linear de-excitation reactions such as triplet-triplet annihilation, which can cause decays to lose their mono-exponential nature, are often neglected. In this work, we derive a global framework to properly interpret decays resulting from a combination of linear and non-linear de-excitation processes. We show why the standard method of using multi-exponential models when decays are not mono-exponential is not always relevant, nor accurate. First, we explain why the triplet de-excitation and light production processes should be analyzed individually: we introduce novel concepts to precisely describe these two processes, namely the deactivation pathway - the reaction which mainly contributes to the triplet state de-excitation - and the measurement pathway - the reaction which is responsible for light production. We derive explicit fitting functions which allow the experimenter to estimate the reaction rates and excited state concentrations in the system. To validate our formalism, we analyze the in vitro Transient Triplet Absorption and DF of Protoporphyrin IX, a well-known biological aromatic molecule used in photodynamic therapy, cancer photodetection and oxygen sensing, which produces DF through various mechanisms depending on concentration and excitation intensity. We also identify the precise assumptions necessary to conclude that triplet-triplet annihilation DF should follow a mono-exponential decay with a lifetime of half the triplet state lifetime. Finally, we describe why the commonly used definitions of triplet / DF lifetime are ill-defined in the case where second-order reactions contribute to the deactivation process, and why the fitting of precise mixed-orders DF kinetics should be preferred in this case. This work could allow the correct interpretation of various long-lived luminescence processes and facilitate their understanding.
- MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- kinetika MeSH
- protoporfyriny chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.
- MeSH
- faktor stimulující kolonie granulocytů metabolismus MeSH
- granulocyty účinky léků MeSH
- hematopoetické kmenové buňky účinky léků MeSH
- hemoxygenasa-1 nedostatek genetika MeSH
- mobilizace hematopoetických kmenových buněk MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- protoporfyriny farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- ferrochelatasa metabolismus MeSH
- fotosenzibilizující látky farmakologie MeSH
- kultivační média farmakologie MeSH
- kyselina aminolevulová farmakologie MeSH
- leukemie patologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- protoporfyriny metabolismus MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
Washed red blood cells (RBCs), supplemented or non-supplemented with sodium azide (to inhibit catalase activity), were exposed to different concentrations of hydrogen peroxide as well as ascorbic acid. Strikingly, catalase within RBCs protected the cells against exogenic hydrogen peroxide even at millimolar concentrations. However, the activity of the erythrocytic catalase failed to protect the RBCs when they were exposed to an oxidative burst of stimulated polymorphonuclear cells (PMNCs) in the presence of several reactive species in addition to peroxide. Oxyhemoglobin, with an excess of hydrogen peroxide, formed oxidized hemoglobin species and caused protein denaturation as well as the rise of heme degradation products which was suspected to falsify zinc protoporphyrin/heme (ZPP/heme) ratio as assessed by hematofluorometry. Our experiments may thus imply that the non-fluorescent hemoglobin background can be modified by reactive oxygen species (ROS) and this can lead to a spurious ZPP/heme ratio. We discuss this phenomenon with respect to ZPP quantification in clinical practice.
- MeSH
- erytrocyty chemie MeSH
- falešně pozitivní reakce MeSH
- fluorometrie MeSH
- hem analýza metabolismus MeSH
- lidé MeSH
- oxidační stres MeSH
- protoporfyriny krev metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Avian eggshells are variable in appearance, including coloration. Here, we demonstrate that Raman spectroscopy can provide accurate diagnostic information about major eggshell constituents, including the pigments biliverdin and protoporphyrin IX. Eggshells pigmented with biliverdin showed a series of pigment-diagnostic Raman peaks under 785 nm excitation. Eggshells pigmented with protoporphyrin IX showed strong emission under 1064 nm and 785 nm excitation, whereas resonance Raman spectra (351 nm excitation) showed a set of protoporphyrin IX informative peaks characteristic of protoporphyrin IX. As representative examples, we identified biliverdin in the olive green eggshells of elegant crested tinamous (Eudromia elegans) and in the blue eggshells of extinct upland moa (Megalapteryx didinus). This study encourages the wider use of Raman spectroscopy in pigment and coloration research and highlights the value of this technique for non-destructive analyses of museum eggshell specimens.
- MeSH
- barva MeSH
- biliverdin analýza MeSH
- biologické pigmenty analýza MeSH
- protoporfyriny analýza MeSH
- ptáci * MeSH
- Ramanova spektroskopie MeSH
- vaječná skořápka chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH