The chytrid Batrachochytrium dendrobatidis (Bd) is a widespread fungus causing amphibian declines across the globe. Although data on Bd occurrence in Eastern Europe are scarce, a recent species distribution model (SDM) for Bd reported that western and north-western parts of Ukraine are highly suitable to the pathogen. We verified the SDM-predicted range of Bd in Ukraine by sampling amphibians across the country and screening for Bd using qPCR. A total of 446 amphibian samples (tissue and skin swabs) from 11 species were collected from 36 localities. We obtained qPCR-positive results for 33 samples including waterfrogs (Pelophylax esculentus complex) and fire- and yellow-bellied toads (Bombina spp.) from 8 localities. We found that Bd-positive localities had significantly higher predicted Bd habitat suitability than sites that were pathogen-free. Amplification and sequencing of the internal transcribed spacer (ITS) region of samples with the highest Bd load revealed matches with ITS haplotypes of the globally distributed BdGPL strain, and a single case of the BdASIA-2/BdBRAZIL haplotype. We found that Bd was non-randomly distributed across Ukraine, with infections present in the western and north-central forested peripheries of the country with a relatively cool, moist climate. On the other hand, our results suggest that Bd is absent or present in low abundance in the more continental central, southern and eastern regions of Ukraine, corroborating the model-predicted distribution of chytrid fungus. These areas could potentially serve as climatic refugia for Bd-susceptible amphibian hosts.
- MeSH
- Batrachochytrium * genetics isolation & purification MeSH
- Models, Biological MeSH
- Chytridiomycota isolation & purification genetics MeSH
- Mycoses * veterinary epidemiology microbiology MeSH
- Amphibians microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Ukraine MeSH
The present paper comprises a systematic survey of helminths (trematodes, an acanthocephalan and nematodes) found in nine species of freshwater fishes in Ecuador collected in March 1999 and those (a trematode and acanthocephalans) collected from an amphibian and two species of freshwater fishes in Venezuela in 1992, 1996 and 2001. The following 17 helminth species were recorded: Trematoda: Prosthenhystera ornamentosa sp. n., P. obesa (Diesing, 1850), Crassicutis intermedius (Szidat, 1954), C. cichlasomae Manter, 1936 and Glypthelmins eleutherodactyli sp. n. Acanthocephala: Quadrigyrus torquatus Van Cleave, 1920, Gracilisentis variabilis (Diesing, 1851) and Neoechinorhynchus (Neoechinorhynchus) ecuadoris sp. n. Nematoda: Cosmoxynema vianai Travassos, 1949, Travnema travnema Pereira, 1938, Touzeta ecuadoris Petter, 1987, Sprentascaris hypostomi Petter et Cassone, 1984, Sprentascaris sp., Contracaecum sp. Type 1 larvae, Contracaecum sp. Type 2 larvae, Procamallanus (Procamallanus) peraccuratus Pinto, Noronha et Rolas, 1976 and Procamallanus (Spirocamallanus) sp. juv. Nearly all of these parasites are reported from Ecuador or Venezuela for the first time and many of these findings represent new host records. The new species P. ornamentosa sp. n. was collected from the gall-bladder of an unidentified anostomid (Anostomidae, Characiformes) in Ecuador, G. eleutherodactyli sp. n. from the digestive tract of the frog Eleutherodactylus sp. (Eleutherodactylidae, Anura) in Venezuela and N. (N.) ecuadoris sp. n. from the intestine of Lebiasina sp. (Lebiasinidae, Characiformes) in Ecuador. Most parasites are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed.
- MeSH
- Helminths * classification isolation & purification MeSH
- Helminthiasis, Animal * epidemiology parasitology MeSH
- Fish Diseases * parasitology epidemiology MeSH
- Amphibians * parasitology MeSH
- Fishes * parasitology MeSH
- Fresh Water * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Ecuador MeSH
- Venezuela MeSH
Based on long-term and often frustrating experiences with the poor quality of tapeworms (Cestoda) collected throughout the world for taxonomic and phylogenetic studies, and considering the increasing obstacles to obtaining new material, a simple, easy-to-use and illustrated methodological guide (manual) is provided. It focusses mainly on key steps in examining hosts, collecting cestodes from poikilothermous vertebrates except elasmobranchs, i.e., from ray-finned fish (Actinopterygii), amphibians and 'reptiles' (a paraphyletic group comprising all sauropsids except birds), and fixing them for subsequent morphological and molecular study. It is proposed that the following methodological points should be followed: (i) ideally only freshly euthanised hosts (not previously frozen) should be used for parasitological examination; (ii) hosts examined should be documented by photographs; host tissue should also be preserved for future genotyping if necessary; (iii) tapeworms should be detached carefully to keep the scolex intact and properly cleaned before fixation; (iv) a small piece of cestode tissue should be always preserved in molecular grade ethanol for DNA sequencing; (v) tapeworms should be fixed as quickly as possible after collecting them and while they are still alive, always using hot (heated) fixatives; this prevents unnatural contraction or deformation and ensures uniform fixation; (vi) each sample (vial) should be properly labelled (a unique code should be given to every cestode sample); (vii) vouchers of sequenced specimens (hologenophores or paragenophores) should always be preserved for identification, and deposited in internationally recognised collections. It is hoped that this guide helps researchers and students to properly process valuable material of cestodes to make it suitable for reliable identification including genotyping and comparative anatomy, which is a prerequisite for any subsequent ecological, biogeographical, phylogenetic life cycle or molecular study.
- MeSH
- Cestoda * MeSH
- Cestode Infections * veterinary parasitology MeSH
- Phylogeny MeSH
- Humans MeSH
- Amphibians MeSH
- Parasites * MeSH
- Reptiles MeSH
- Fishes MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact β-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.
- MeSH
- Acute Disease MeSH
- Anticoagulants pharmacology therapeutic use MeSH
- Antioxidants pharmacology therapeutic use MeSH
- Mice MeSH
- Amphibians MeSH
- Pancreatitis * chemically induced drug therapy MeSH
- Trypsin MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Proteocephalid tapeworms of frogs of the family Ranidae ('true' frogs) are reviewed with emphasis on their species diversity, host specificity and geographical distribution. New molecular data (nuclear lsrDNA and mitochondrial COI sequences) are presented for tapeworms of four species of ranid frogs in North America, including the poorly known Ophiotaenia saphena Osler, 1931 of Rana clamitans Latreille and R. catesbeiana (Shaw), which is redescribed using new material from Arkansas, USA. Tapeworms of R. sphenocephala (Cope) and R. pipiens Schreber, the latter previously identified as O. saphena, represent another, putative new species, but are not formally described due to insufficient available material. Proteocephalus papuensis Bursey, Goldberg et Kraus, 2008 from Sylvirana supragrisea (Menzies) is transferred to Ophiotaenia La Rue, 1911 as a new combination. After a critical review of the literature, only nine nominal species of Ophiotaenia are recognised as valid, which is in contrast to the large number of ranid frogs (> 440 spp.). The reasons for this striking disparity are briefly discussed, and a key based on morphology is presented for the identification of all species of Ophiotaenia from the Ranidae. Molecular data are available for only two taxa from North America that form a monophyletic group. The relationships among tapeworms of ranid frogs occurring in other zoogeographical regions are not yet known. The taxonomic status of Batrachotaenia Rudin, 1917, which was erected to accommodate proteocephalids from amphibians, is also discussed. To facilitate future studies, a tabulated summary of all 32 species of proteocephalids belonging to three genera reported from amphibians (frogs and salamanders) is presented, with information on their hosts, distribution, and taxonomically important characters, including key measurements.
- MeSH
- Cestoda * MeSH
- Cestode Infections * epidemiology veterinary MeSH
- Ranidae MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- North America MeSH
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
- MeSH
- Apicomplexa isolation & purification MeSH
- Biodiversity MeSH
- Classification MeSH
- Amphibians parasitology MeSH
- Vertebrates parasitology MeSH
- Reptiles parasitology MeSH
- Birds parasitology MeSH
- Fishes parasitology MeSH
- Mammals parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Batrachochytrium salamandrivorans (Bsal), a pathogenic fungus causing the fatal disease chytridiomycosis in amphibians, was likely introduced to Europe through the trade in pet salamanders from Asia and then escaped into wild populations. Among European countries, Spain has a large number of private breeders and keepers of pet salamanders, and cases of Bsal in wild and captive populations already have been confirmed there. However, surveillance for the pathogen in Spanish collections of amphibians is sparse. Therefore, assisted by private owners and breeders, we surveyed 10 amphibian collections and analysed a total of 317 samples for presence of Bsal. All of our analyses yielded negative results. However, this apparent lack of Bsal cases in captivity should not encourage relaxation of vigilance, quarantine efforts or good practices. Because amphibian collections represent highly dynamic environments (animals are coming in and out), the pathogen could easily be introduced into a collection by new individuals. Any case of Bsal infection in captive animals could lead to its further spread to wild populations of susceptible species, potentially decimating them, and thus should be prevented.
- MeSH
- Batrachochytrium MeSH
- Chytridiomycota * MeSH
- Amphibians MeSH
- Caudata MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia MeSH
- Europe MeSH
- Spain MeSH
Acanthocephalus balkanicus Batchvarov et Combes, 1974 was incompletely described from the northern crested newt, Triturus cristatus (Laurenti) (Amphibia: Salamandridae), a possible synonym of the Balkan crested newt, Triturus ivanbureschi Arntzen et Wielstra, from a pond in village of Pesnopoy, southern Bulgaria. We provide a full description of adult males and females of the same taxon from the olm, Proteus anguinus Laurenti (Amphibia: Proteidae), the only exclusively aquatic cave-dwelling vertebrate in Europe, captured in Postojna-Planina Cave System in Slovenia. Cystacanths were also collected from the cave ecomorph of Asellus aquaticus (Linnaeus) (Crustacea: Asellidae) in the same location. Molecular analysis of specimens from Slovenia revealed that they are genetically almost identical to those of Acanthocephalus anguillae (Müller, 1780), a common parasite of European freshwater fishes. We propose to recognise the morphological and host differences by describing A. balkanicus as a new subspecies of A. anguillae. Acanthocephalus anguillae balkanicus is rather small and cylindrical with cylindrical proboscis having 10 rows of 6 hooks with simple roots each, long neck, large balloon-shaped lemnisci, small spherical anterior testis, and 6 club-shaped cement glands in 3 pairs. SEM images reveal more morphological details and the X-ray scans of gallium cut hooks shows considerably higher levels of phosphorus and calcium in adult hooks than in cystacanth hooks, especially in basal areas. Sulfur levels were higher in the arch and basal area of cystacanth hooks than adult hooks. Considering that both definitive and intermediate hosts of the Slovenian population of this acanthocephalan are bound to cave life, it is possible that its entire life cycle is uniquely completed underground.
- MeSH
- Acanthocephala anatomy & histology classification ultrastructure MeSH
- Host-Parasite Interactions MeSH
- Isopoda parasitology MeSH
- Caves MeSH
- Microscopy, Electron, Scanning veterinary MeSH
- Microscopy veterinary MeSH
- Proteidae parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Slovenia MeSH
Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.
- MeSH
- Global Health MeSH
- Chytridiomycota * genetics MeSH
- Mycoses epidemiology microbiology veterinary MeSH
- Amphibians microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Drugs are excreted from the human body as both original substances and as metabolites and enter aquatic environment through waste water. The aim of this study was to widen the current knowledge considering the effects of waterborne antidepressants with different modes of action-amitriptyline, venlafaxine, sertraline-on embryos of non-target aquatic biota-fish (represented by Danio rerio) and amphibians (represented by Xenopus tropicalis). The tested concentrations were 0.3; 3; 30; 300 and 3000 μg/L in case of amitriptyline and venlafaxine and 0.1; 1; 10; 100 and 1000 μg/L for sertraline. Test on zebrafish embryos was carried out until 144 h post fertilization, while test on Xenopus embryos was terminated after 48 h. Lethal and sublethal effects as well as swimming alterations were observed at higher tested concentrations that are not present in the environment. In contrast, mRNA expression of genes related to heart, eye, brain and bone development (nkx2.5, otx 2, bmp4 and pax 6) seems to be impacted also at environmentally relevant concentrations. In a wider context, this study reveals several indications on the ability of antidepressants to affect non target animals occupying environments which may be contaminated by such compounds.
- MeSH
- Antidepressive Agents toxicity MeSH
- Water Pollutants, Chemical toxicity MeSH
- Zebrafish growth & development physiology MeSH
- Amphibians physiology MeSH
- Swimming MeSH
- Seafood MeSH
- Toxicity Tests MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH