Background electrolyte
Dotaz
Zobrazit nápovědu
We synthesised and used new type of quaternary ammonium salt [S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate] as effective additive to acidic background electrolytes. We used this quaternary ammonium salt as effective agent for capillary zone electrophoresis separation of model mixture of five tricyclic antidepressants (amitriptyline, nortriptyline, imipramine, desipramine and clomipramine) as model analytes. We observed that addition of S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate ([HMDP](+) [BF(4)](-)) to acidic background electrolytes leads to suppression of magnitude of electroosmotic flow (EOF) and gradually change the direction of the EOF. Baseline separation of five TAs was achieved by using of 91.1 mmol L(-1) (20 gL(-1)) of [HMDP](+) [BF(4)](-) in 25 mmol L(-1) sodium phosphate pH 2.5, where electroosmotic mobility was -11.3 x 10(-9) m(2) V(-1) s(-1). We achieved baseline separation of five TAs with using of [HMDP](+) [BF(4)](-) as water solution too. We observed that [HMDP](+) [BF(4)](-) can be used as buffer additive, which offers relatively smaller anodic electroosmotic flow instead of cationic surfactants that are mostly used for genarating of anodic electroosmotic flow in capillary electrophoresis.
This paper describes the results of the second-level testing of the simulation program Simul 5 Complex. We compare the published experimental results with the simulated migration behavior of the enantiomers at different pH and chiral selector concentration values and use the same optimization object function, separation selectivity, as the original papers. Simul 5 Complex proved to be a suitable tool for the prediction of the effective mobilities, separation selectivities, and migration order reversals in these pH-dependent and CD concentration dependent enantiomer separations. In addition, by performing simulations of four different separations systems (both real and model systems), Simul 5 Complex revealed the existence of unexpected and hitherto unexplained electromigration dispersion effects that were caused by the complexation process itself and could significantly impair the quality of the separations.
- MeSH
- chemické modely * MeSH
- dipeptidy chemie izolace a purifikace MeSH
- elektroforéza kapilární * MeSH
- elektrolyty MeSH
- koncentrace vodíkových iontů MeSH
- počítačová simulace MeSH
- software MeSH
- stereoizomerie MeSH
- tropany chemie izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Separations of bare superparamagnetic magnetite nanoparticles (BSPMNPs, approx. 11 nm diameter) was performed using non-complexing (nitrate) and complexing (chloride, citrate and phosphate) electrolyte ions with additions of tetramethylammonium hydroxide (TMAOH), which is commonly applied to control the synthesis of stable iron oxides. The use of TMAOH as a background electrolyte (BGE) additive for capillary electrophoresis (CE) separations provided for the first time electropherograms of BSPMNPs exhibiting symmetrical and highly reproducible peaks, free of spurious spikes characteristic of nanoparticle clusters. Consequently, accurate determination of the electrophoretic effective mobility of BSPMNPs was possible, yielding a value of -3.345E-08 m2 V-1 s-1 (relative standard deviation (RSD) of 0.500%). The obtained mobilities of BSPMNPs in the presence of various electrolyte ions show that the degree of complexation with the surface of BSPMNPs follows the order chloride < citrate < phosphate, correlating with the stabilities of Fe(III) complexes with the respective anions. Finally, bare and carboxylated iron oxide nanoparticles were successfully separated in only 10 min using 10 mM Tris-nitrate containing 20 mM of TMAOH as electrolyte. Our findings show that simple and rapid CE experiments are an excellent tool to characterise and monitor properties and interactions of iron oxide nanoparticles with other molecules for surface modification purposes.
BACKGROUND: Metabolic acidosis (MAC) is a common aspect of dialysis-dependent patients. It is definitely caused by acid retention; however, the influence of other plasma ions is unclear. Understanding the mechanism of MAC and its correction is important when choosing the dialysis solution. Therefore, we assessed the relationship between intradialytic change of acid-base status and serum electrolytes. METHODS: We studied 68 patients on post-dilution hemodiafiltration, using dialysate bicarbonate concentration 32mmol/L. The acid-base disorders were evaluated by the traditional Siggaard-Anderson and modern Stewart approaches. RESULTS: The mean pre-dialysis pH was 7.38, standard base excess (SBE) -1.5, undetermined anions (UA(-)) 7.5, sodium-chloride difference (Diff(NaCl)) 36.2mmol/L. MAC was present in 34% of patients, of which 83% had an increased UA(-) as a major cause of MAC. The mean nPCR was 0.99g/kg/day and correlated negatively with SBE. After dialysis, metabolic alkalosis predominated in 81%. The mean post-dialysis pH was 7.45, SBE 4, UA(-) 2.6, Diff(NaCl) 36.9mmol/L. ΔSBE significantly correlated with ΔUA(-), but not with ΔDiff(NaCl) or ΔCl(-). CONCLUSIONS: MAC in patients on hemodiafiltration is mainly caused by acid retention and is associated with higher protein intake. We did not prove the effect of sodium or chloride on acid-base balance. Even though we used a relatively low concentration of dialysate bicarbonate, we recorded a high proportion of post-dialysis alkalosis caused by the excessive decrease of undetermined anions, which had been completely replaced by bicarbonate and indicated the elimination of undesirable anions, as well as of normal endogenous anions.
- MeSH
- chronické selhání ledvin komplikace terapie MeSH
- elektrolyty krev MeSH
- hemodiafiltrace škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- poruchy acidobazické rovnováhy etiologie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Fourteen azodyes containing one to five acidic groups were separated by capillary zone electrophoresis (CZE). The effects of the pH and beta-cyclodextrin additive to the background electrolyte on the separation of sulphonated azodyes were investigated. The effects of the working conditions significantly differ in non-coated fused silica capillaries and in capillaries coated with polyacrylamide. Splitting of the zones of metal-complex dyes was observed in polyacrylamide coated capillaries and the background electrolyte with 10 mmol/L beta-cyclodextrin, due to the separation of stereoisomeric forms of the dyes, which were separated for the first time using CE. Relations between the structure of the sulphonated azodyes and the electrophoretic mobilities are discussed. Naphthalene mono- to tetrasulphonic acids were used as the standards for the calibration of migration scale of the analysed dyes.
Intact heparin was characterized and determined in model samples, in infusion solutions and in blood plasma by capillary electrophoresis (CE) with contactless conductivity detection. The CE separation of polydisperse heparin took place in open silica capillaries, in electrolytes containing a polymer (hydroxyethyl)cellulose, poly(ethylene glycol) or dextran. The best separation of heparin from excess inorganic ions present in real samples was attained in a background electrolyte consisting of 0.8 M acetic acid and 1% (w/v) dextran (100 kDa). The limit of detection (LOD) was 1.3 µmol l-1. This electrolyte was used in determination of heparin in blood plasma and in infusion solutions.