PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.
- MeSH
- Algorithms MeSH
- Arteries diagnostic imaging MeSH
- Pharmacokinetics MeSH
- Contrast Media pharmacokinetics MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Necrosis pathology MeSH
- Perfusion MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted methods MeSH
- Signal-To-Noise Ratio MeSH
- Regression Analysis MeSH
- Reproducibility of Results MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an l(1) -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.
- MeSH
- Algorithms MeSH
- Artifacts MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Sensitivity and Specificity MeSH
- Image Enhancement methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
PURPOSE: Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied. METHODS: The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution. RESULTS: The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data. Further increasing of the sampling intervals led to systematic distortions, such as lowering and broadening of the 1st pass peak. The resulting perfusion-parameter estimation error was below 10% for the sampling intervals up to 3 s (synthetic data), in line with the real data perfusion-parameter boxplots which remained unchanged up to the sampling interval 3.6 s. CONCLUSION: We show that use of blind deconvolution decreases the demands on temporal resolution in DCE-MRI from about 1.5 s (in case of measured arterial input functions) to 3-4 s. This can be exploited in increased spatial resolution or larger organ coverage.
- MeSH
- Algorithms MeSH
- Time Factors MeSH
- Contrast Media * pharmacokinetics MeSH
- Magnetic Resonance Imaging * methods MeSH
- Perfusion MeSH
- Publication type
- Journal Article MeSH
A new approach to 2-D blind deconvolution of ultrasonic images in a Bayesian framework is presented. The radio-frequency image data are modeled as a convolution of the point-spread function and the tissue function, with additive white noise. The deconvolution algorithm is derived from statistical assumptions about the tissue function, the point-spread function, and the noise. It is solved as an iterative optimization problem. In each iteration, additional constraints are applied as a projection operator to further stabilize the process. The proposed method is an extension of the homomorphic deconvolution, which is used here only to compute the initial estimate of the point-spread function. Homomorphic deconvolution is based on the assumption that the point-spread function and the tissue function lie in different bands of the cepstrum domain, which is not completely true. This limiting constraint is relaxed in the subsequent iterative deconvolution. The deconvolution is applied globally to the complete radiofrequency image data. Thus, only the global part of the point-spread function is considered. This approach, together with the need for only a few iterations, makes the deconvolution potentially useful for real-time applications. Tests on phantom and clinical images have shown that the deconvolution gives stable results of clearly higher spatial resolution and better defined tissue structures than in the input images and than the results of the homomorphic deconvolution alone.
- MeSH
- Algorithms MeSH
- Bayes Theorem MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Sensitivity and Specificity MeSH
- Ultrasonography methods MeSH
- Artificial Intelligence MeSH
- Image Enhancement methods MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.
- MeSH
- Algorithms * MeSH
- Models, Biological * MeSH
- Capillaries MeSH
- Carcinoma, Renal Cell blood supply MeSH
- Contrast Media MeSH
- Kidney blood supply MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Kidney Neoplasms blood supply MeSH
- Perfusion Imaging MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: The composite vascular transport function of a brain voxel consists of one convolutional component for the arteries, one for the capillaries and one for the veins in the voxel of interest. Here, the goal is to find each of these three convolutional components and the associated arterial input function. PHARMACOKINETIC MODELLING: The single voxel vascular transport functions for arteries, capillaries and veins were all modelled as causal exponential functions. Each observed multipass tissue contrast function was as a first approximation modelled as the resulting parametric composite vascular transport function convolved with a nonparametric and voxel specific multipass arterial input function. Subsequently, the residue function was used in the true perfusion equation to optimize the three parameters of the exponential functions. DECONVOLUTION METHODS: For each voxel, the parameters of the three exponential functions were estimated by successive iterative blind deconvolutions using versions of the Lucy-Richardson algorithm. The final multipass arterial input function was then computed by nonblind deconvolution using the Lucy-Richardson algorithm and the estimated composite vascular transport function. RESULTS: Simulations showed that the algorithm worked. The estimated mean transit time of arteries, capillaries and veins of the simulated data agreed with the known input values. For real data, the estimated capillary mean transit times agreed with known values for this parameter. The nonparametric multipass arterial input functions were used to derive the associated map of the arrival time. The arrival time map of a healthy volunteer agreed with known arterial anatomy and physiology. CONCLUSION: Clinically important new voxelwise hemodynamic information for arteries, capillaries and veins separately can be estimated using multipass tissue contrast functions and the iterative blind Lucy-Richardson deconvolution algorithm.
- MeSH
- Algorithms MeSH
- Arteries pathology MeSH
- Capillaries * diagnostic imaging MeSH
- Contrast Media * pharmacokinetics MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain diagnostic imaging MeSH
- Cerebrovascular Circulation MeSH
- Perfusion Imaging MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: An extension of single- and multi-channel blind deconvolution is presented to improve the estimation of the arterial input function (AIF) in quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). METHODS: The Lucy-Richardson expectation-maximization algorithm is used to obtain estimates of the AIF and the tissue residue function (TRF). In the first part of the algorithm, nonparametric estimates of the AIF and TRF are obtained. In the second part, the decaying part of the AIF is approximated by three decaying exponential functions with the same delay, giving an almost noise free semi-parametric AIF. Simultaneously, the TRF is approximated using the adiabatic approximation of the Johnson-Wilson (aaJW) pharmacokinetic model. RESULTS: In simulations and tests on real data, use of this AIF gave perfusion values close to those obtained with the corresponding previously published nonparametric AIF, and are more noise robust. CONCLUSION: When used subsequently in voxelwise perfusion analysis, these semi-parametric AIFs should give more correct perfusion analysis maps less affected by recording noise than the corresponding nonparametric AIFs, and AIFs obtained from arteries. SIGNIFICANCE: This paper presents a method to increase the noise robustness in the estimation of the perfusion parameter values in DCE-MRI.
- MeSH
- Algorithms MeSH
- Arteries pathology MeSH
- Contrast Media chemistry pharmacokinetics MeSH
- Magnetic Resonance Imaging * MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Perfusion MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted * MeSH
- Reproducibility of Results MeSH
- Image Enhancement * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH