Synthesis, physicochemical behavior, tumor accumulation and preliminary anticancer activity of a new biodegradable graft copolymer-doxorubicin (DOX) conjugates designed for passive tumor targeting were investigated. In the graft high-molecular-weight conjugates the multivalent N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer was grafted with a similar but semitelechelic HPMA copolymer; both types of polymer chains were bearing doxorubicin attached by hydrazone bonds enabling intracellular pH-controlled drug release. The polymer grafts were attached to the main chain through spacers, degradable enzymatically or reductively, facilitating, after the drug release, intracellular degradation of the graft polymer carrier to short fragments excretable from the organism by glomerular filtration. The graft polymer-DOX conjugate exhibited prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice indicating the important role of the EPR effect in the anticancer activity. The graft polymer-DOX conjugates showed a significantly higher antitumor activity in vivo than DOX.HCl or the linear polymer conjugate when tested in mice bearing 38C13 B-cell or EL4 T-cell lymphoma, with a significant number of long-term-surviving (LTS) mice with EL4 T-cell lymphoma treated with a single dose 15 mg DOX equiv./kg on day 10.
- MeSH
- Acrylamides administration & dosage pharmacokinetics pharmacology chemical synthesis MeSH
- Biological Transport MeSH
- Cell Line MeSH
- Doxorubicin administration & dosage pharmacokinetics pharmacology chemical synthesis MeSH
- Chemistry, Pharmaceutical MeSH
- Hydrolysis MeSH
- Injections, Intravenous MeSH
- Hydrogen-Ion Concentration MeSH
- Delayed-Action Preparations MeSH
- Lymphoma drug therapy metabolism pathology MeSH
- Molecular Weight MeSH
- Mice, Inbred C3H MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Drug Carriers MeSH
- Antibiotics, Antineoplastic administration & dosage pharmacokinetics pharmacology chemical synthesis MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
New biodegradable star polymer-doxorubicin (Dox) conjugates designed for passive tumor targeting were investigated and the present study described their synthesis, physico-chemical characterization, drug release and biodegradation. In the conjugates the core formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin attached by hydrazone bonds, which enabled intracellular pH-controlled drug release, or by a GFLG sequence, which was susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of biodegradable polymer conjugates in a broad range of molecular weights (110-295 kDa) while still maintaining low polydispersity (∼1.7). The polymer grafts were attached to the dendrimers either through stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high molecular weight polymer carrier to products that were able to be excreted from the body by glomerular filtration. Biodegradability tests showed that the rate of degradation was much faster for reductively degradable conjugates (completed within 4 h) than the degradation of conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (within 72 h). This finding was likely due to the difference in steric hindrance for the small molecule glutathione and the enzyme cathepsin B. As for drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin either under mild acidic conditions or in the presence of lysosomal enzyme cathepsin B, both of which modeled the tumor cell microenvironment.
- MeSH
- Biocompatible Materials chemical synthesis chemistry MeSH
- Dendrimers chemistry MeSH
- Doxorubicin administration & dosage chemistry MeSH
- Methacrylates chemistry MeSH
- Molecular Structure MeSH
- Drug Carriers chemical synthesis chemistry MeSH
- Antibiotics, Antineoplastic administration & dosage chemistry MeSH
- Solubility MeSH
- Drug Stability MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Novel star polymer-doxorubicin conjugates designed for passive tumor targeting have been developed and their potential for treatment of cancer has been investigated. In the present study the synthesis, physico-chemical characterization, drug release, bio-distribution and preliminary data of in vivo efficacy of the conjugates are described. In the water-soluble conjugates the core of a molecule formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds enabling intracellular pH-controlled hydrolytic drug release, or by GFLG sequence susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of polymer conjugates in a broad range of molecular weights (1.1-3.0·10(5) g/mol). In contrast to free drug or linear conjugates the star polymer-Dox conjugates exhibited prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice indicating important role of the EPR effect. The star polymer-Dox conjugates showed significantly higher anti-tumor activity in vivo than Dox?HCl or its linear or graft polymer conjugates, if treated with a single dose 15 or 5 mg Dox eq./kg. Method of tumor initialization (acute or chronic experimental tumor models) significantly influenced effectiveness of the treatment with much lower success in treatment of mice bearing chronic tumors.
- MeSH
- Acrylamides chemistry MeSH
- Dendrimers chemistry MeSH
- Doxorubicin administration & dosage chemistry pharmacokinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Drug Delivery Systems MeSH
- Delayed-Action Preparations MeSH
- Lymphoma, T-Cell drug therapy pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Drug Carriers chemistry MeSH
- Antibiotics, Antineoplastic administration & dosage chemistry pharmacokinetics MeSH
- Solubility MeSH
- Tissue Distribution MeSH
- Water chemistry MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of <0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments.
- MeSH
- Acrylamides administration & dosage MeSH
- Enbucrilate MeSH
- Contrast Media administration & dosage MeSH
- Blood Volume MeSH
- Drug Delivery Systems * MeSH
- Microbubbles MeSH
- Mice, Nude MeSH
- Cell Line, Tumor MeSH
- Neoplasms blood supply metabolism physiopathology ultrasonography MeSH
- Permeability MeSH
- Regional Blood Flow MeSH
- Tomography methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In recent years, polymer drug carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with pH-triggered drug release have shown enhanced uptake in solid tumors and excellent antitumor activity. Here, the impact of the structure of the acid-labile spacer between the drug and the polymer carrier on the biodistribution of both the drug and the carrier was studied using in vivo noninvasive multispectral optical imaging of dual fluorescently labeled HPMA copolymers. Five different spacers containing a pH-sensitive hydrazone bond were synthesized and used to combine a fluorescent model drug with a polymer backbone, conjugated with another non-releasable fluorescent dye. Two copolymers differing in polymer chain structure (linear and star-like) and molecular weight (30 and 200kDa) were used to distinguish between carriers with molecular weights above and below the limit for renal filtration. The rate of model drug release from the conjugates was determined in vitro. The biodistributions of the six most promising conjugates were investigated in vivo in athymic nude mice inoculated with human colon carcinoma xenograft. The structure of the spacer in the vicinity of the hydrazone bond significantly influenced the release rate of the model drug. The slow release rate of a pyridyl group bearing spacer resulted in a greater amount of the model drug being transported to the tumor, which was independent of the carrier structure. The results of this study emphasize the importance of careful selection of the structure and appropriate spacer when designing polymer conjugates intended for passive tumor targeting.
- MeSH
- Acrylamides analysis MeSH
- Fluorescent Dyes administration & dosage pharmacokinetics MeSH
- Indoles administration & dosage pharmacokinetics MeSH
- Carbocyanines administration & dosage pharmacokinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Delayed-Action Preparations analysis MeSH
- Humans MeSH
- Models, Molecular MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Colonic Neoplasms drug therapy MeSH
- Tissue Distribution MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Here, we present the synthesis, physicochemical, and preliminary biological characterization of micellar polymer-betulinic acid (BA) conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carriers, enabling the controlled release of cytotoxic BA derivatives in solid tumors or tumor cells. Various HPMA copolymer conjugates differing in the structure of the spacer between the drug and the carrier were synthesized, all designed for pH-triggered drug release in tumor tissue or tumor cells. The high molecular weight of the micellar conjugates should improve the uptake of the drug in solid tumors due to the Enhanced permeability and retention (EPR) effect. Nevertheless, only the conjugate containing BA with methylated carboxyl groups enabled pH-dependent controlled release in vitro. Moreover, drug release led to the disassembly of the micellar structure, which facilitated elimination of the water-soluble HPMA copolymer carrier from the body by renal filtration. The methylated BA derivative and its polymer conjugate exhibited high cytostatic activity against DLD-1, HT-29, and HeLa carcinoma cell lines and enhanced tumor accumulation in HT-29 xenograft in mice.
- MeSH
- Biodegradable Plastics chemistry MeSH
- Doxorubicin administration & dosage chemistry MeSH
- Humans MeSH
- Methacrylates administration & dosage chemistry MeSH
- Micelles MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neoplasms drug therapy MeSH
- Drug Carriers administration & dosage chemistry MeSH
- Polymers administration & dosage chemistry MeSH
- Cell Proliferation drug effects MeSH
- Triterpenes administration & dosage chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The enzymatic release of a model drug from a polymer carrier inside a tumor using multispectral optical imaging in vivo in nude mice bearing colorectal carcinomas HT-29 and DLD-1 is demonstrated. Much higher release rate in vivo from a linear (30 kDa) (N-2-hydroxypropyl)methacrylamide-based polymer compared with a high molecular weight branched (170 kDa) polymer conjugate is observed, probably due to steric hindrance of the cleavable spacer of the latter polymer to proteolytic enzymes. There is no significant difference in the relative biodistribution of the two polymers, but the branched polymer circulates much longer. Both polymers are labeled with two different fluorophores. Dyomics-676 as a drug model is attached to the polymer via an enzymatically cleavable Gly-Phe-Leu-Gly spacer; Dyomics 782 is bound to the same polymer via a nondegradable amide bond, enabling the tracking of the polymer carrier after i.v. application to mice.
- MeSH
- Acrylamides * chemistry pharmacokinetics pharmacology MeSH
- Fluorescent Dyes * chemistry pharmacokinetics pharmacology MeSH
- Colorectal Neoplasms * drug therapy metabolism pathology MeSH
- Humans MeSH
- Mice, Nude MeSH
- Mice MeSH
- Drug Carriers * chemistry pharmacokinetics pharmacology MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Herein, new biodegradable star polymer-doxorubicin conjugates designed for passive tumor targeting were investigated, and their synthesis, physico-chemical characterization, drug release, biodegradation, biodistribution and in vivo anti-tumor efficacy are described. In the conjugates, the core formed by poly(amidoamine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds, which enabled intracellular pH-controlled drug release. The described synthesis facilitated the preparation of biodegradable polymer conjugates in a broad range of molecular weights (200-1000g/mol) while still maintaining low polydispersity (~1.7). The polymer grafts were attached to the dendrimers through either stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high-molecular-weight polymer carrier to excretable products. Biodegradability tests in suspensions of EL4 T-cell lymphoma cells showed that the rate of degradation was much faster for reductively degradable conjugates (close to completion within 24h of incubation) than for conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (slow degradation taking several days). This finding was likely due to the differences in steric hindrance in terms of the accessibility of the small molecule glutathione and the bulky enzyme cathepsin B to the polymer substrate. Regarding drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin under mild acidic conditions that model the tumor cell microenvironment. The star polymer-Dox conjugates exhibited significantly prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice, indicating the important role of the EPR effect in its anti-cancer activity. The star polymer conjugates showed prominently higher in vivo anti-tumor activities than the free drug or linear polymer conjugate when tested in mice bearing EL4 T-cell lymphoma, with a significant number of long-term surviving (LTS). Based on the results, we conclude that a M(w) of HPMA copolymers of 200,000 to 600,000g/mol is optimal for polymer carriers designed for the efficient passive targeting to solid tumors. In addition, an expressive therapy-dependent stimulation of the immune system was observed.
- MeSH
- Biocompatible Materials chemistry metabolism MeSH
- Dendrimers chemistry metabolism MeSH
- Doxorubicin chemistry metabolism pharmacokinetics therapeutic use MeSH
- Humans MeSH
- Lymphoma drug therapy MeSH
- Methacrylates chemistry metabolism MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Antibiotics, Antineoplastic chemistry metabolism pharmacokinetics therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR.
- MeSH
- Drug Resistance, Neoplasm * MeSH
- Hydrogen-Ion Concentration * MeSH
- Drug Delivery Systems * MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Drug Carriers * MeSH
- Polymers * MeSH
- Antineoplastic Agents administration & dosage MeSH
- Drug Liberation * MeSH
- Dose-Response Relationship, Drug MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cancer is one of the biggest healthcare concerns in our century, a disease whose treatment has become even more difficult following reports of drug-resistant tumors. When this happens, chemotherapy treatments fail or decrease in efficiency, leading to catastrophic consequences to the patient. This discovery, along with the fact that drug resistance limits the efficacy of current treatments, has led to a new wave of discovery for new methods of treatment. The use of nanomedicine has been widely studied in current years as a way to effectively fight drug resistance in cancer. Research in the area of cancer nanotechnology over the past decades has led to tremendous advancement in the synthesis of tailored nanoparticles with targeting ligands that can successfully attach to chemotherapy-resistant cancer by preferentially accumulating within the tumor region through means of active and passive targeting. Consequently, these approaches can reduce the off-target accumulation of their payload and lead to reduced cytotoxicity and better targeting. This review explores some categories of nanocarriers that have been used in the treatment of drug-resistant cancers, including polymeric, viral, lipid-based, metal-based, carbon-based, and magnetic nanocarriers, opening the door for an exciting field of discovery that holds tremendous promise in the treatment of these tumors.
- Publication type
- Journal Article MeSH