Q132562179
Dotaz
Zobrazit nápovědu
online
BACKGROUND: The marine n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert numerous beneficial effects on health, but their potency to improve treatment of type 2 diabetic (T2D) patients remains poorly characterized. We aimed to evaluate the effect of a combination intervention using EPA + DHA and the insulin-sensitizing drug pioglitazone in overweight/obese T2D patients already treated with metformin. METHODS: In a parallel-group, four-arm, randomized trial, 69 patients (66 % men) were assigned to 24-week-intervention using: (i) corn oil (5 g/day; Placebo), (ii) pioglitazone (15 mg/day; Pio), (iii) EPA + DHA concentrate (5 g/day, containing ~2.8 g EPA + DHA; Omega-3), or (iv) pioglitazone and EPA + DHA concentrate (Pio& Omega-3). Data from 60 patients were used for the final evaluation. At baseline and after intervention, various metabolic markers, adiponectin and cytokines were evaluated in serum using standard procedures, EPA + DHA content in serum phospholipids was evaluated using shotgun lipidomics and mass spectrometry, and hyperinsulinemic-euglycemic clamp and meal test were also performed. Indirect calorimetry was conducted after the intervention. Primary endpoints were changes from baseline in insulin sensitivity evaluated using hyperinsulinemic-euglycemic clamp and in serum triacylglycerol concentrations in fasting state. Secondary endpoints included changes in fasting glycemia and glycated hemoglobin (HbA1c), changes in postprandial glucose, free fatty acid and triacylglycerol concentrations, metabolic flexibility assessed by indirect calorimetry, and inflammatory markers. RESULTS: Omega-3 and Pio& Omega-3 increased EPA + DHA content in serum phospholipids. Pio and Pio& Omega-3 increased body weight and adiponectin levels. Both fasting glycemia and HbA1c were increased by Omega-3, but were unchanged by Pio& Omega-3. Insulin sensitivity was not affected by Omega-3, while it was improved by Pio& Omega-3. Fasting triacylglycerol concentrations and inflammatory markers were not significantly affected by any of the interventions. Lipid metabolism in the meal test and metabolic flexibility were additively improved by Pio& Omega-3. CONCLUSION: Besides preventing a modest negative effect of n-3 fatty acids on glycemic control, the combination of pioglitazone and EPA + DHA can be used to improve lipid metabolism in T2D patients on stable metformin therapy. TRIAL REGISTRATION: EudraCT number 2009-011106-42.
- Publikační typ
- časopisecké články MeSH
Type 2 diabetes (T2D) as well as cardiovascular disease (CVD) represent major complications of obesity and associated metabolic disorders (metabolic syndrome). This review focuses on the effects of long-chain n-3 polyunsaturated fatty acids (omega-3) on insulin sensitivity and glucose homeostasis, which are improved by omega-3 in many animal models of metabolic syndrome, but remain frequently unaffected in humans. Here we focus on: (i) mechanistic aspects of omega-3 action, reflecting also our experiments in dietary obese mice; and (ii) recent studies analysing omega-3's effects in various categories of human subjects. Most animal experiments document beneficial effects of omega-3 on insulin sensitivity and glucose metabolism even under conditions of established obesity and insulin resistance. Besides positive results obtained in both cross-sectional and prospective cohort studies on healthy human populations, also some intervention studies in prediabetic subjects document amelioration of impaired glucose homeostasis by omega-3. However, the use of omega-3 to reduce a risk of new-onset diabetes in prediabetic subjects still remains to be further characterized. The results of a majority of clinical trials performed in T2D patients suggest that omega-3 have none or marginal effects on metabolic control, while effectively reducing hypertriglyceridemia in these patients. Despite most of the recent randomized clinical trials do not support the role of omega-3 in secondary prevention of CVD, this issue remains still controversial. Combined interventions using omega-3 and antidiabetic or hypolipidemic drugs should be further explored and considered for treatment of patients with T2D and other diseases.
- MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus MeSH
- homeostáza účinky léků MeSH
- inzulin krev MeSH
- inzulinová rezistence * MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- medicína založená na důkazech MeSH
- myši MeSH
- omega-3 mastné kyseliny aplikace a dávkování farmakokinetika MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVE: Resolution of low-grade inflammation of white adipose tissue (WAT) is one of the keys for amelioration of obesity-associated metabolic dysfunctions. We focused on the identification of adipokines, which could be involved at the early stages of resolution of WAT inflammation. METHODS AND PROCEDURE: Male C57BL/6J mice with obesity induced in response to a 22-week feeding corn oil-based high-fat (cHF) diet were divided into four groups and were fed with, for 2 weeks, control cHF diet or cHF-based diets supplemented with: (i) concentrate of n-3 long-chain polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic acids (cHF+F); (ii) thiazolidinedione drug rosiglitazone (cHF+TZD); and (iii) both compounds (cHF+F+TZD). RESULTS: The short-term combined intervention exerted additive effect in the amelioration of WAT inflammation in obese mice, namely in the epididymal fat, even in the absence of any changes in either adipocyte volume or fat mass. The combined intervention elicited hypolipidaemic effect and induced adiponectin, whereas the responses to single interventions (cHF+F, cHF+TZD) were less pronounced. In addition, analysis in WAT lysates using protein arrays revealed that the levels of a small set of adipose tissue-related proteins, namely macrophage inflammatory protein 1γ, endoglin, vascular cell adhesion molecule 1 and interleukin 1 receptor antagonist, changed in response to the anti-inflammatory interventions and were strongly reduced in the cHF+F+TZD mice. These results were verified using both the analysis of gene expression and enzyme-linked immunosorbent analysis in WAT lysates. In contrast with adiponectin, which showed changing plasma levels in response to dietary interventions, the levels of the above proteins were affected only in WAT. CONCLUSIONS: We identified several adipose tissue-related proteins, which are locally involved in resolution of low-grade inflammation and remodelling of WAT.
- MeSH
- adipokiny metabolismus MeSH
- bílá tuková tkáň metabolismus patologie MeSH
- dieta s vysokým obsahem tuků MeSH
- dietní tuky MeSH
- ELISA MeSH
- energetický metabolismus MeSH
- imunohistochemie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyseliny dokosahexaenové farmakologie MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- obezita imunologie patologie MeSH
- omega-3 mastné kyseliny farmakologie MeSH
- thiazolidindiony farmakologie MeSH
- tukové buňky metabolismus MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Oleuropein, the major phenolic compound found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects and suppresses the adipocyte differentiation in vitro. Herein, we characterized molecular mechanisms underlying the anti-adipogenic effects of oleuropein on 3T3-L1 cells and adipocytes derived from stromal-vascular fraction of dorsolumbar and gonadal fat dissected from mice. We found that oleuropein (>100 μM) decreased viability of preadipocytes proliferating in vitro and did not exerted any cytotoxic effects in post-confluent cells after induction of differentiation. Oleuropein (>100 μM) inhibited adipocyte differentiation, suppressed gene expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-/enhancer-binding protein α, sterol regulatory element-binding transcription factor 1c and fatty acid synthase. Furthermore, we tested ability of oleuropein to regulate of PPARγ-, PPARα- or PPARβ-/PPARδ-mediated β-lactamase expression in appropriate reporter gene assays. Oleuropein between 10 and 400 μM concentrations did not affect activity of PPARα or PPARβ/δ. Contrary, PPARγ activity, either basal or rosiglitazone activated, was inhibited by oleuropein. Our data suggest that oleuropein exerts anti-adipogenic effect through direct inhibition of PPARγ transcriptional activity.
- Publikační typ
- časopisecké články MeSH
Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) exert beneficial effects on health and they could help to prevent development of obesity and associated metabolic disorders. In our previous studies in mice fed high-fat (cHF; ~60 % calories as fat) diet and maintained at 20 °C, dietary LC n-3 PUFA could counteract accretion of body fat, without inducing mitochondrial uncoupling protein 1 (UCP1) in adipose tissue, suggesting that the anti-obesity effect was not linked to adaptive (UCP1-mediated) thermogenesis. To exclude a possible dependence of the anti-obesity effect on any mechanism inducible by cold, experiments were repeated in mice maintained at thermoneutrality (30 °C). Male C57BL/6J mice were fed either cHF diet, or cHF diet supplemented with LC n-3 PUFA, or standard diet for 7 months. Similarly as at 20 °C, the LC n-3 PUFA supplementation reduced accumulation of body fat, preserved lipid and glucose homeostasis, and induced fatty acid re-esterification in epididymal white adipose tissue. Food consumption was not affected by LC n-3 PUFA intake. Our results demonstrated anti-obesity metabolic effect of LC n-3 PUFA, independent of cold-induced thermogenesis and they suggested that induction of fatty acid re-esterification creating a substrate cycle in white fat, which results in energy expenditure, could contribute to the anti-obesity effect.
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- glukózový toleranční test MeSH
- homeostáza fyziologie MeSH
- kyseliny mastné neesterifikované krev MeSH
- látky proti obezitě * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nepřímá kalorimetrie MeSH
- nízká teplota MeSH
- obezita farmakoterapie MeSH
- omega-3 mastné kyseliny terapeutické užití MeSH
- tělesná hmotnost účinky léků MeSH
- termogeneze účinky léků fyziologie MeSH
- triglyceridy krev MeSH
- tuková tkáň metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- mastné kyseliny * metabolismus MeSH
- tuková tkáň * metabolismus MeSH
- Publikační typ
- abstrakt z konference MeSH
- práce podpořená grantem MeSH