Q89545888 Dotaz Zobrazit nápovědu
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
- MeSH
- acetáty metabolismus MeSH
- analýza metabolického toku MeSH
- citrátový cyklus * MeSH
- deuterium * MeSH
- játra * metabolismus diagnostické zobrazování MeSH
- krysa rodu rattus MeSH
- magnetická rezonanční tomografie MeSH
- potkani Sprague-Dawley MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Carnosine is a performance-enhancing food supplement with a potential to modulate muscle energy metabolism and toxic metabolites disposal. In this study we explored interrelations between carnosine supplementation (2 g/day, 12 weeks) induced effects on carnosine muscle loading and parallel changes in (i) muscle energy metabolism, (ii) serum albumin glycation and (iii) reactive carbonyl species sequestering in twelve (M/F=10/2) sedentary, overweight-to-obese (BMI: 30.0+/-2.7 kg/m2) adults (40.1+/-6.2 years). Muscle carnosine concentration (Proton Magnetic Resonance Spectroscopy; 1H-MRS), dynamics of muscle energy metabolism (Phosphorus Magnetic Resonance Spectroscopy; 31P-MRS), body composition (Magnetic Resonance Imaging; MRI), resting energy expenditure (indirect calorimetry), glucose tolerance (oGTT), habitual physical activity (accelerometers), serum carnosine and carnosinase-1 content/activity (ELISA), albumin glycation, urinary carnosine and carnosine-propanal concentration (mass spectrometry) were measured. Supplementation-induced increase in muscle carnosine was paralleled by improved dynamics of muscle post-exercise phosphocreatine recovery, decreased serum albumin glycation and enhanced urinary carnosine-propanal excretion (all p<0.05). Magnitude of supplementation-induced muscle carnosine accumulation was higher in individuals with lower baseline muscle carnosine, who had lower BMI, higher physical activity level, lower resting intramuscular pH, but similar muscle mass and dietary protein preference. Level of supplementation-induced increase in muscle carnosine correlated with reduction of protein glycation, increase in reactive carbonyl species sequestering, and acceleration of muscle post-exercise phosphocreatine recovery.
- MeSH
- dospělí MeSH
- fosfokreatin metabolismus MeSH
- karnosin * metabolismus farmakologie MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- Maillardova reakce MeSH
- potravní doplňky MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
Magnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS. Dynamic 31P MRS can monitor muscle fatigue and energy reserve during muscle contractions as well as the dynamics of recuperation of skeletal muscle tissue during the following recovery through signal changes of phosphocreatine (PCr), inorganic phosphate and adenosine triphosphate (ATP). Based on the measured data it is possible to calculate intracellular pH, metabolic flux of ATP through creatine-kinase reaction, anaerobic glycolysis and oxidative phosphorylation and other metabolic parameters as mitochondrial capacity. This review primarily focuses on describing various technical designs of MR compatible ergometers for dynamic 31P MRS that must be constructed with respect to the presence of magnetic field. It is also expected that the construction of ergometers will be easy for the handling and well accepted by examined subjects.