Cardiovascular diseases represent an economic burden for health systems accounting for substantial morbidity and mortality worldwide. Despite timely and costly efforts in drug development, the cardiovascular safety and efficacy of the drugs are not always fully achieved. These lead to the drugs' withdrawal with adverse cardiac effects from the market or in the late stages of drug development. There is a growing need for a cost-effective drug screening assay to rapidly detect potential acute drug cardiotoxicity. The Langendorff isolated heart perfusion technique, which provides cardiac hemodynamic parameters (e.g., contractile function and heart rate), has become a powerful approach in the early drug discovery phase to overcome drawbacks in the drug candidate's identification. However, traditional ex vivo retrograde heart perfusion methods consume a large volume of perfusate, which increases the cost and limits compound screening. An elegant and cost-effective alternative mode for ex vivo retrograde heart perfusion is the constant-flow with a recirculating circuit (CFCC), which allows assessment of cardiac function using a reduced perfusion volume while limiting adverse effects on the heart. Here, we provide evidence for cardiac parameters stability over time in this mode. Next, we demonstrate that our recycled ex vivo perfusion system and the traditional open one yield similar outputs on cardiac function under basal conditions and upon ?-adrenergic stimulation with isoproterenol. Subsequently, we validate the proof of concept of therapeutic agent screening using this efficient method. ?-blocker (i.e., propranolol) infusion in closed circulation countered the positive effects induced by isoproterenol stimulation on cardiac function. Keywords: Drug development, Drug screening, Cardiovascular safety, Langendorff method, Closed circulation.
- MeSH
- Rats MeSH
- Perfusion * MeSH
- Drug Evaluation, Preclinical * methods MeSH
- Isolated Heart Preparation * MeSH
- Heart drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: The use of alternative water sources such as rainwater or greywater (i.e., wastewater excluding water from toilets) for non-potable purposes may save water but, on the other hand, can also pose health risks to users. The main health risks come from microorganisms (such as bacteria, viruses, fungi, and protozoa). This work aims to analyse especially microbiological quality of rainwater and greywater used inside buildings in detail and to expand the existing knowledge about the potential health risks associated with these alternative water sources. It also considers methodological problems during E. coli and coliform bacteria detection. The final objective is to discuss requirements and appropriate indicators for monitoring recycled water quality. METHODS: We examined 30 buildings with non-potable water systems in the Czech Republic and analysed a total of 137 samples of rainwater and 120 samples of greywater. From these 30 buildings, eleven, 5 of which used rainwater and 6 of which used greywater, were sampled regularly for 1-2 years for basic chemical parameters, various faecal indicators, C. perfringens, Legionella spp. and P. aeruginosa. Occasionally, samples were analysed also for the presence of environmental mycobacteria, amoebas, viruses, and selected pathogens. RESULTS: Nearly three quarters of rainwater samples contained the faecal indicators E. coli or enterococci, or both, and in samples from several buildings also Clostridium perfringens was repeatedly detected. Untreated and treated rainwater were in respect to microbiological quality similar, suggesting that treatment processes were not very efficient. In greywater samples, beside faecal indicators, also P. aeruginosa and thermotolerant amoebas were repeatedly detected. Treatment technologies used for greywater were more efficient than those for rainwater systems. CONCLUSION: Based on the results we evaluated appropriate indicators for monitoring recycled water quality and drafted the first Czech regulation for non-potable water.
- MeSH
- Escherichia coli * MeSH
- Feces MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.
The accumulation of chitin waste from the seafood industry is a serious environmental problem. However, this residue can be degraded by chitinases and its subproducts, such as chitosan, economically exploited. In this study, a chitinase producer bacteria, identified as Paenibacillus illinoisensis, was isolated from the Brazilian coastal city of Terra de Areia - Rio Grande Do Sul (RS) and was immobilized within alginate beads to evaluate its chitinase production. The alginate beads containing cells presented an average size of 4 mm, 99% of immobilization efficiency and increased the enzymatic activity in 40.71% compared to the free cells. The biomass during enzymatic production increased 62.01% and the total cells leaked from the alginate beads corresponded to 6.46% after 96 h. Immobilized cells were reused in a sequential batch system and remained stable for production for up to four 96-h cycles, decreasing only 21.04% of the initial activity at the end of the fourth cycle. Therefore, the methodology used for cell immobilization resulted in adequate beads to maintain cell viability during the enzymatic production, increasing enzymatic activity, showing low cell leakage from the support and appropriate recyclable capacity.
- MeSH
- Alginates chemistry MeSH
- Chitinases * MeSH
- Hexuronic Acids chemistry MeSH
- Soil MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
Fabrication of adsorbents with excellent adsorption capacity, outstanding stability, easy separation ability, excellent recyclability and widely generality for organic dyes removal from wastewater remains challenging. Herein, three-dimensional polyaniline/poly(vinyl alcohol)/montmorillonite (PANI/PVAL/MMT) hybrid aerogels with easy separation performance and highly effective reusable adsorption on both anionic and cationic dyes were fabricated by a simple in-situ polymerization method. As-prepared hybrid aerogels were characterized via infrared and Raman spectra, scanning electron microscopy, energy dispersive spectra mapping, small and wide-angle X-ray scattering, thermogravimetric analysis, mercury intrusion porosimetry and elemental analysis. The results showed that MMT particles were successfully incorporated into aerogel matrix. Well-defined hierarchical structure, where PANI nanofibers are coated on the skeleton wall, can be observed for PANI/PVAL/MMT when the incorporation amount of MMT was around 11.1 wt%. The adsorption performance of as-prepared hybrid aerogels on both anionic and cationic dyes was systemically carried out at different solution pH, adsorbent dosage and initial dye concentration. The data analysis showed that the adsorption process for PVAL/PANI/MMT aerogel for Reactive Black 5, methyl orange and safranin followed Freundlich isotherm and the maximum experimental adsorption capacities were found to be 199, 251 and 57.0 mg g-1 at 25 °C, respectively. Mechanism studies indicated that the electrostatic interaction is the main driving force for the adsorption of dyes. The results demonstrated that the fabricated hybrid aerogel is an efficient adsorbent for the removal of both anionic and cationic organic dyes.
- Publication type
- Journal Article MeSH
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
- MeSH
- Biological Transport genetics physiology MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Neurodegenerative Diseases * genetics metabolism MeSH
- Neurons metabolism MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Few peculiarities have been observed in the etiology of coronavirus disease 2019 (COVID-19), one such being its greater prevalence in men than women partly due to the higher expressions of angiotensin-converting enzyme-2 (ACE2) in the male reproductive tissues. Recent scientific reports are in line with some of the evidence-based hypotheses in the initial phase of the COVID-19 pandemic, regarding the involvement of oxidative stress (OS) and oxidant-sensitive pathways in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated male reproductive disruptions. The seminal dissemination of SARS-CoV-2 or its components, testicular disruptions due to viral infection and oxidative damage in the testis have all been evidenced recently. High-dose of antioxidants, such as vitamin C, have been shown to be a useful treatment for COVID-19 patients, to alleviate systemic inflammation and OS. In addition, vitamin C is a major testicular antioxidant that neutralizes excess reactive oxygen species (ROS), prevents sperm agglutination, prevents lipid peroxidation, recycles vitamin E, and protects against DNA damage. Thus, the present review aims to discuss the mechanism of COVID-19-mediated male reproductive dysfunctions, based on the evidence available so far, and explore the possibility of using vitamin C in alleviating testicular OS and associated damage caused by COVID-19.
- MeSH
- COVID-19 * MeSH
- COVID-19 Drug Treatment MeSH
- Ascorbic Acid therapeutic use MeSH
- Humans MeSH
- Oxidative Stress MeSH
- Pandemics MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Constructed wetlands (CWs) are decentralized wastewater treatment systems considered to be green and low cost. They have the potential to effectively remove pollutants and recycle nutrients with plant composting. However, they need large areas to implement them due to the usual high Hydraulic Retention Times (HRT), reaching up to 50 days. The main objective of the present study was to evaluate the influence of HRT (HRT = 3, 7, and 10 days), and seasonality on Total Phosphorus (TP) removal, and standing stock in a pilot scale free water surface CW (FWS CW). Unplanted and planted (Eichhornia crassipes) tanks were evaluated in wet and dry seasons. The FWS CW was set up as a complementary treatment to a secondary level wastewater treatment plant. The system was monitored weekly for ten months, totalizing 29 replicate samplings (n = 58). Planted tanks were harvested every week to keep free space for plant reproduction (∼40%). The mean removal efficiency of TP ranged between 82% and 95% without a significant difference between HRT (pvalue > 0.05). However, when the effects of the sedimentation of the unplanted tanks were disregarded, the lowest HRT (3 days) tank presented the highest standing stock of TP. The wet season presented a significant difference in TP removal results (pvalue < 0.05), associated with higher macrophyte growth rate due to more intense solar irradiation and incorporation of TP by E. crassipes. The results point out advances in P removal and recycling by a low-cost ecological engineering system.
Although phosphine is ubiquitously present in anaerobic environments, little is known regarding the microbial community dynamics and metabolic pathways associated with phosphine formation in an anaerobic digestion system. This study investigated the production of phosphine in anaerobic digestion, with results indicating that phosphine production mainly occurred during logarithmic microbial growth. Dehydrogenase and hydrogen promoted the production of phosphine, with a maximum phosphine concentration of 300 mg/m3. The abundance of Ruminococcaceae and Escherichia was observed to promote phosphine generation. The analysis of metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc pathway database revealed the highest relative abundance of replication and repair in genetic information processing; further, the cofactor, prosthetic group, electron carrier, and vitamin biosynthesis were observed to be closely related to phosphine formation. A phylogenetic tree was reconstructed based on the neighbor-joining method. The results indicated the clear evolutionary position of the isolated Pseudescherichia sp. SFM4 strain, adjacent to Escherichia, with a stable phosphate-reducing ability for a maximum phosphine concentration of 26 mg/m3. The response surface experiment indicated that the initial optimal conditions for phosphine production by SFM4 could be achieved with nitrogen, carbon, and phosphorus loads of 6.17, 300, and 10 mg/L, respectively, at pH 7.47. These results provide comprehensive insights into the dynamic changes in the microbial structure, isolated single bacterial strain, and metabolic pathways associated with phosphine formation. They also provide information on the molecular biology associated with phosphorus recycling.
- MeSH
- Anaerobiosis MeSH
- Bioreactors microbiology MeSH
- Clostridiales genetics metabolism MeSH
- Nitrogen metabolism MeSH
- Escherichia genetics metabolism MeSH
- Phosphates metabolism MeSH
- Phosphines analysis metabolism MeSH
- Phosphorus metabolism MeSH
- Phylogeny MeSH
- Metabolic Networks and Pathways * genetics MeSH
- Microbiota * MeSH
- Sewage microbiology MeSH
- Hydrogen metabolism MeSH
- Publication type
- Journal Article MeSH