Reductive dissolution
Dotaz
Zobrazit nápovědu
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
Co-milling of a drug with a co-former is an efficient technique to improve the solubility of drugs. Besides the particle size reduction, the co-milling process induces a structural disorder and the creation of amorphous regions. The extent of drug solubility enhancement is dependent on the proper choice of co-milling co-former. The aim of this work was to compare the effects of different co-formers (meglumine and polyvinylpyrrolidone) on the dissolution rates of glass forming (indomethacin) and non-glass forming (mefenamic acid) model drugs. A positive impact of the co-milling on the dissolution behavior was observed in all co-milled mixtures, even if no substantial amorphization was observed. While meglumine exhibited pronounced effects on the dissolution rate of both drugs, the slightest enhancement was observed in mixtures with polyvinylpyrrolidone. The evaluation of specific release rate revealed the surface activation of drug particle is responsible for improving the dissolution rate of both drug types, but for the glass former, this surface activation could be persistent while maintaining a high dissolution rate even until a high fraction of drug is released. Our results, therefore, indicate that adequate co-former choice and consideration of drug glass forming ability are important for a successful co-milling approach to poorly water-soluble drugs.
- MeSH
- indomethacin MeSH
- léčivé přípravky * MeSH
- povidon * MeSH
- příprava léků MeSH
- rozpustnost MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.
- MeSH
- chitosan * MeSH
- meloxikam MeSH
- pomocné látky MeSH
- rozpustnost MeSH
- Publikační typ
- časopisecké články MeSH
Burst drug release is often considered a negative phenomenon resulting in unexpected toxicity or tissue irritation. Optimal release of a highly soluble active pharmaceutical ingredient (API) from hypromellose (HPMC) matrices is technologically impossible; therefore, a combination of polymers is required for burst effect reduction. Promising variant could be seen in combination of HPMC and insoluble Eudragits® as water dispersions. These can be applied only on API/insoluble filler mixture as over-wetting prevention. The main hurdle is a limited water absorption capacity (WAC) of filler. Therefore, the object of this study was to investigate the dissolution behavior of levetiracetam from HPMC/Eudragit®NE matrices using magnesium aluminometasilicate (Neusilin® US2) as filler with excellent WAC. Part of this study was also to assess influence of thermal treatment on quality parameters of matrices. The use of Neusilin® allowed the application of Eudragit® dispersion to API/Neusilin® mixture in one step during high-shear wet granulation. HPMC was added extragranularly. Obtained matrices were investigated for qualitative characteristics, NMR solid-state spectroscopy (ssNMR), gel layer dynamic parameters, SEM, and principal component analysis (PCA). Decrease in burst effect (max. of 33.6%) and dissolution rate, increase in fitting to zero-order kinetics, and paradoxical reduction in gel layer thickness were observed with rising Eudragit® NE concentration. The explanation was done by ssNMR, which clearly showed a significant reduction of the API particle size (150-500 nm) in granules as effect of surfactant present in dispersion in dependence on Eudragit®NE amount. This change in API particle size resulted in a significantly larger interface between these two entities. Based on ANOVA and PCA, thermal treatment was not revealed as a useful procedure for this system.
- MeSH
- aplikace orální MeSH
- gely MeSH
- kyseliny polymethakrylové aplikace a dávkování chemie metabolismus MeSH
- léky s prodlouženým účinkem aplikace a dávkování chemie metabolismus MeSH
- magnetická rezonanční spektroskopie metody MeSH
- pomocné látky chemie MeSH
- rozpustnost MeSH
- silikáty aplikace a dávkování chemie metabolismus MeSH
- sloučeniny hliníku aplikace a dávkování chemie metabolismus MeSH
- sloučeniny hořčíku aplikace a dávkování chemie metabolismus MeSH
- uvolňování léčiv MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.
- Publikační typ
- časopisecké články MeSH
One of the conventional methods of alleviating the problem of poor drug solubility is the particle size reduction. The efficiency of this approach depends on successful formulation suppressing the drug agglomeration. The aim of this study was to circumvent the dissolution problems of model hydrophobic meloxicam drug (MLX) by using liquid media of different wetting capacity to comminute and formulate a rapidly dissolving carrier system without the use of surfactants. Micro-suspensions of MLX were prepared by ball milling, using water or n-Heptane as a liquid medium. The suspensions were used as granulation liquids to formulate granulate from microcrystalline cellulose and lactose mixture. The release kinetics from prepared granulates were studied using the USP-4 dissolution apparatus. Micro-suspensions prepared via wet milling in non-water liquid media exhibited a massive improvement of release rate compared with source meloxicam and they outperformed their water-milled counterparts. The release rates from those formulations, despite not comprising any surfactant, were comparable to those obtained by different authors using surfactant stabilized nanosuspension formulations. Thus, they can present an interesting formulation alternative for hydrophobic drugs that are dissolution limited.
In spite of the fact that dissolution time profiles of 250mg ursodeoxycholic acid (UCDA) capsules developed by Sponsor and 250mg hard capsules produced by Ursofalk®, Dr. Falk Pharma GmbH, indicated similarity (f2=60.6), a bioavailability study indicated unexpected differences in the formulations. To find an explanation of the in vivo performance of the compared formulations, the dissolution profiles were analyzed using a novel dissolution theory considering: The dissolution model was applied to the measured data using SADAPT. Despite Cmax and AUC values showing higher values after administration of the test product, a reduction of UDCA particle size for the test formulation was suggested for reformulation. The decision was based on the strongly pH-dependent UDCA solubility, formation of insoluble crystals at low pH condition and the known high pH fluctuations ranging from pH1 to 8 in empty stomach. The performed reformulation led to increased dissolution rate of the test product and to a positive bioequivalence study which compared the reformulated test generic formulation with two reference products purchased from two highly regulated markets.
- MeSH
- aplikace orální MeSH
- biologické modely MeSH
- chemické modely MeSH
- dospělí MeSH
- klinické křížové studie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina ursodeoxycholová aplikace a dávkování chemie farmakokinetika MeSH
- lidé MeSH
- plocha pod křivkou MeSH
- potkani inbrední BB MeSH
- tobolky MeSH
- uvolňování léčiv * MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Titanium biomaterials are widely used in the medical field due to their biocompatibility and excellent corrosion and mechanical resistance. However, these materials have no antibacterial properties. To obtain an antibacterial active surface, a nanostructure of Ti6Al4V alloy was created. This specific nanostructure contained nanotubes and micro-cavities and was used as a substrate for silver anchoring. The electrochemical approach to silver reduction was studied. It is a common approach for silver deposition and in this work, inhomogeneities in the nanostructure were used as a preferential area for silver localisation. The galvanostatic regimen of deposition allowed for a technically quantitative process and the required silver placement. The experimental conditions used enabled testing and silver dissolution rate evaluation within a reasonable time span. Based on the corrosion and analytical results (EDS, XPS and ICP-MS), a two-phase silver release mechanism was confirmed. The openings of the individual nanotubes were filled with silver nanoparticles, whose release was relatively fast. By contrast, the silver anchored inside the cavities allowed the silver to release gradually. Antibacterial efficiency against Staphylococcus aureus and Escherichia coli was successfully demonstrated. Cytotoxicity testing with murine fibroblasts showed cell metabolic activity far above the normative limit of 70%.
- MeSH
- antibakteriální látky aplikace a dávkování chemie farmakologie MeSH
- biokompatibilní materiály chemie MeSH
- buněčné linie MeSH
- Escherichia coli účinky léků MeSH
- infekce vyvolané Escherichia coli farmakoterapie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- myši MeSH
- nanostruktury chemie MeSH
- protézy a implantáty MeSH
- stafylokokové infekce farmakoterapie MeSH
- Staphylococcus aureus účinky léků MeSH
- stříbro aplikace a dávkování chemie farmakologie MeSH
- titan chemie MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this study, we compared the enhanced permeability and retention (EPR) effect, toxicity, and therapeutic effect of the conjugate of the linear polymer poly(N-(2-hydroxypropyl)methacrylamide) (HPMA) with pirarubicin with an Mw below the renal threshold (39g/mol) (named LINEAR) and the disulfide-linked tandem-polymeric dimer of the poly(HPMA)-pirarubicin conjugate with an Mw above the renal threshold (93g/mol) (named DIBLOCK). The DIBLOCK conjugate, which was susceptible to reductive degradation, showed both a better EPR effect (tumor delivery) (2.5 times greater at 24h) and a prolonged plasma half-life. In addition, DIBLOCK had a better antitumor effect, as judged by percent survival, than did LINEAR (80% vs 65% at 150days), without any apparent toxicity in an S180 tumor model. However, the LD50 value of LINEAR was slightly higher than that of DIBLOCK (50mg/kg vs 37.5mg/kg, respectively). DIBLOCK required a longer time than LINEAR to reach maximum accumulation in the tumor. DIBLOCK also showed a greater time-dependent increase in the concentration in the tumor compared with the plasma concentration.
- MeSH
- biologická dostupnost MeSH
- biologický transport MeSH
- doxorubicin škodlivé účinky analogy a deriváty chemie farmakologie MeSH
- kyseliny polymethakrylové chemická syntéza MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nosiče léků chemická syntéza MeSH
- poločas MeSH
- protinádorové látky škodlivé účinky chemie farmakologie MeSH
- renální reabsorpce MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This work focused on the specific behavior of Tl-bearing phases in the BCR (Community Bureau of Reference) sequential extraction (SE) scheme, namely Tl-bearing ferrihydrite, goethite, birnessite, calcite, illite, sphalerite and feldspar in their simple model mixtures with quartz. Several significant discrepancies between the obtained and expected behaviors of these phases in the BCR SE were observed. The amount of Tl released as the exchangeable/acid-extractable fraction (55-82% of the total Tl content) showed a substantial H(+)-promoted dissolution of all Fe(III) and Mn(III, IV) oxides (corresponding to up to 61% of solid Fe dissolved) and incongruent (increased) extraction of Tl from ferrihydrite and goethite. Reductive conditions of the second SE step were insufficient to complete goethite dissolution with corresponding Tl amount retained in the solid phase. Similarly, insufficient oxidation of sphalerite and lower Tl recovery of the oxidisable fraction was identified. In contrast, the BCR SE seems to produce well predictable results of Tl leaching from Tl-bearing calcite and feldspar. Only 70% of total Tl content was extracted from Tl-modified illite in the exchangeable/acid-extractable step, while 30% was associated with the reducible and residual fractions, i.e., Tl was strongly fixed to the illite matrix.