STED
Dotaz
Zobrazit nápovědu
Alzheimer's disease (AD) involves the propagation of filaments of tau protein throughout the cerebral cortex. Imaging tau filaments and oligomers in human brain at high resolution would help contribute insight into the mechanism and progression of tauopathic diseases. STED microscopy is a nano-scale imaging technique and we aimed to test the abilities of this method for resolving tau structures within human brain. Using autopsied 50μm AD brain sections, we demonstrate that STED microscopy can resolve immunolabelled tau filaments at 77nm resolution. Ribbon-like tau filaments imaged by STED appeared smooth along their axis with limited axial undulations. STED also resolved 70-80nm wide tau puncta. Of the fluorophores tested, STAR635p was optimal for STED imaging in this tissue. This was in part due to brain tissue autofluorescence within the lower wavelength ranges (488-590nm). Further, the stability and minimal photobleaching of STAR635p allowed STED z-stacks of neurons packed with tau filaments (neurofibrillary tangles) to be collated. There was no loss of x-y image resolution of individual tau filaments through the 20μm z-stack. This demonstrates that STED can contribute to nano-scale analysis and characterisation of pathologies within banked human autopsied brain tissue. Resolving tau structures at this level of resolution provides promising avenues for understanding mechanisms of pathology propagation in the different tauopathies as well as illuminating what contributes to disease heterogeneity.
- MeSH
- Alzheimerova nemoc diagnostické zobrazování patologie MeSH
- barvení a značení MeSH
- lidé MeSH
- neurofibrilární klubka patologie ultrastruktura MeSH
- optické zobrazování MeSH
- proteiny tau chemie ultrastruktura MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.
Imaging of nuclear structures within intact eukaryotic nuclei is imperative to understand the effect of chromatin folding on genome function. Recent developments of super-resolution fluorescence microscopy techniques combine high specificity, sensitivity, and less-invasive sample preparation procedures with the sub-diffraction spatial resolution required to image chromatin at the nanoscale. Here, we present a method to enhance the spatial resolution of a stimulated-emission depletion (STED) microscope based only on the modulation of the STED intensity during the acquisition of a STED image. This modulation induces spatially encoded variations of the fluorescence emission that can be visualized in the phasor plot and used to improve and quantify the effective spatial resolution of the STED image. We show that the method can be used to remove direct excitation by the STED beam and perform dual color imaging. We apply this method to the visualization of transcription and replication foci within intact nuclei of eukaryotic cells.
- MeSH
- buněčné jádro metabolismus MeSH
- fluorescenční mikroskopie metody MeSH
- lidé MeSH
- struktury buněčného jádra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200-250 nm laterally, ~500-700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4',6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.
- MeSH
- chromozomy rostlin chemie genetika metabolismus MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- indoly chemie MeSH
- ječmen (rod) cytologie genetika MeSH
- konfokální mikroskopie metody MeSH
- metafáze genetika MeSH
- reprodukovatelnost výsledků MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
- Publikační typ
- časopisecké články MeSH
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.
Edícia pre sted. zdrav. prac.
1. vyd. 246 s. : obr., grafy.
γ-Tubulin is essential for microtubule nucleation and also plays less understood roles in nuclear and cell-cycle-related functions. High abundancy of γ-tubulin in acentrosomal Arabidopsis cells facilitated purification and biochemical characterization of large molecular species of γ-tubulin. TEM, fluorescence, and atomic force microscopy of purified high molecular γ-tubulin forms revealed the presence of linear filaments with a double protofilament substructure, filament bundles and aggregates. Filament formation from highly purified γ-tubulin free of γ-tubulin complex proteins (GCPs) was demonstrated for both plant and human γ-tubulin. Moreover, γ-tubulin associated with porcine brain microtubules formed oligomers. Experimental evidence on the intrinsic ability of γ-tubulin to oligomerize/polymerize was supported by conservation of α- and β-tubulin interfaces for longitudinal and lateral interactions for γ-tubulins. STED (stimulated emission depletion) microscopy of Arabidopsis cells revealed fine, short γ-tubulin fibrillar structures enriched on mitotic microtubular arrays that accumulated at polar regions of acentrosomal spindles and the outer nuclear envelope before mitosis, and were also present in nuclei. Fine fibrillar structures of γ-tubulin representing assemblies of higher order were localized in cell-cycle-dependent manner at sites of dispersed γ-tubulin location in acentrosomal plant cells as well as at sites of local γ-tubulin enrichment after drug treatment. Our findings that γ-tubulin preserves the capability of prokaryotic tubulins to self-organize into filaments assembling by lateral interaction into bundles/clusters help understanding of the relationship between structure and multiple cellular functions of this protein species and suggest that besides microtubule nucleation and organization, γ-tubulin may also have scaffolding or sequestration functions.
- MeSH
- Arabidopsis chemie genetika MeSH
- cytoskelet chemie genetika MeSH
- mikrofilamenta chemie genetika ultrastruktura MeSH
- mikrotubuly chemie genetika MeSH
- mitóza genetika MeSH
- polymerizace MeSH
- proteinové agregáty genetika MeSH
- proteiny asociované s mikrotubuly chemie genetika MeSH
- tubulin chemie genetika ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.
Previously, a number of ~ 1.4 of mitochondrial DNA (mtDNA) molecules in a single nucleoid was reported, which would reflect a minimum nucleoid division. We applied 3D-double-color direct stochastic optical reconstruction microscopy (dSTORM), i.e. nanoscopy with ~ 25-40 nm x,y-resolution, together with our novel method of Delaunay segmentation of 3D data to identify unbiased 3D-overlaps. Noncoding D-loops were recognized in HeLa cells by mtDNA fluorescence in situ hybridization (mtFISH) 7S-DNA 250-bp probe, containing biotin, visualized by anti-biotin/Cy3B-conjugated antibodies. Other mtFISH probes with biotin or Alexa Fluor 647 (A647) against ATP6-COX3 gene overlaps (1,100 bp) were also used. Nucleoids were imaged by anti-DNA/(A647-)-Cy3B-conjugated antibodies. Resulting histograms counting mtFISH-loci/nucleoid overlaps demonstrated that 45% to 70% of visualized nucleoids contained two or more D-loops or ATP6-COX3-loci, indicating two or more mtDNA molecules per nucleoid. With increasing number of mtDNA per nucleoid, diameters were larger and their distribution histograms peaked at ~ 300 nm. A wide nucleoid diameter distribution was obtained also using 2D-STED for their imaging by anti-DNA/A647. At unchanged mtDNA copy number in osteosarcoma 143B cells, TFAM expression increased nucleoid spatial density 1.67-fold, indicating expansion of existing mtDNA and its redistribution into more nucleoids upon the higher TFAM/mtDNA stoichiometry. Validation of nucleoid imaging was also done with two TFAM mutants unable to bend or dimerize, respectively, which reduced both copy number and nucleoid spatial density by 80%. We conclude that frequently more than one mtDNA molecule exists within a single nucleoid in HeLa cells and that mitochondrial nucleoids do exist in a non-uniform size range.