Since its inception, sequential injection chromatography (SIC) has evolved through several stages. Key moments including introduction of the novel technique combining sequential injection analysis and monolithic column, the first generation of commercial SIC system employing robust pump, the utilization of columns packed with fused-core particles, the on-line hyphenation of extraction and separation steps in SIC, are now followed by the second generation of commercial SIC system employing stainless steel syringe pump and parts optimized for chromatographic separation. The key developments always mean acceleration of the evolution by opening new avenues and reduction of compromises in automated analytical methods based on the flow analysis. The updates, new features, and prospects of the novel instrument are described and discussed on perspective of the method developed for extraction and separation of selected phenolic acids (gallic, protocatechuic, caffeic, p-coumaric and ferulic). The method hyphenates miniaturized on-line solid phase extraction using strong anion exchange sorbent in commercial cartridge for HPLC (20 × 1 mm) and liquid chromatography using chromatographic column (C18 50 × 4.6 mm, 5 μm particles) packed with fused-core particles in the SIC manifold. The separation in gradient mode used acetonitrile: aqueous formic acid pH 2.0 mobile phase and spectrophotometric detection at 270, 300, and 320 nm. Injected sample volumes were 200 and 500 μL. The performance of the extraction step was characterized by the recovery 94.0-107.8%, enrichment factors about 20 or 50, and the separation by peak capacities 13-34, peak symmetries 1.17-1.64, and resolutions 0.82-3.75). While using a sample volume of 200 μL, our method was characterized by the following validation parameters: LODs of 0.0075-0.03 mg L-1, LOQs of 0.025-0.10 mg L-1, calibration ranges 0.025-2.50 mg L-1 (r > 0.999), repeatability of signal at 0.50 mg L-1of RSD ≤ 1.46% (n = 6), and overall time of analysis 7.1 min. The results including pilot analysis of white and red wines demonstrated the capability of novel SIC instrument to enable fast, selective, and sensitive analysis.
- Publication type
- Journal Article MeSH
A fully automated method for the determination of lovastatin in dietary supplements containing red yeast rice has been developed. It uses a sequential injection analysis system combined with solid-phase extraction applying highly selective molecularly imprinted polymer sorbent. A miniaturized column for on-line extraction was prepared by packing 4.5 mg of the sorbent in a 5.0 × 2.5-mm-i.d. cartridge, which was used in the flow manifold. Sequential injection analysis manifold enabled all steps of lovastatin extraction and continuous spectrophotometric detection at 240 nm. A limit of detection of 60 μg g-1, a limit of quantitation of 200 μg g-1, and a linear calibration range of 200-2000 μg g-1 were achieved. Intra-day and inter-day precision values (RSD) were ≤ 6.7% and ≤ 4.9%, respectively, and method recovery values of spiked red yeast rice extracts at 200, 1000, and 2000 μg g-1 concentration levels were 82.9, 95.2, and 87.7%. Our method was used for determination of lovastatin lactone in four dietary supplements containing red yeast rice as a natural source of lovastatin, also known as monacolin K. The extracted samples were subsequently analyzed by the reference UHPLC-MS/MS method. Statistical comparison of results (F test, t test, α = 0.05) obtained by both methods did not reveal significant difference. A substantial advantage of the new automated approach is high sample throughput thanks to the analysis time of 7.5 min, miniaturization via down-scaling the extraction column, and smaller sample and solvent consumption, as well as reduced generation of waste. Graphical abstract ᅟ.
- MeSH
- Anticholesteremic Agents analysis MeSH
- Biological Products analysis MeSH
- Equipment Design MeSH
- Solid Phase Extraction instrumentation methods MeSH
- Limit of Detection MeSH
- Lovastatin analysis MeSH
- Molecular Imprinting instrumentation methods MeSH
- Polymers chemistry MeSH
- Dietary Supplements analysis MeSH
- Flow Injection Analysis instrumentation methods MeSH
- Spectrophotometry, Ultraviolet instrumentation methods MeSH
- Tandem Mass Spectrometry instrumentation methods MeSH
- Chromatography, High Pressure Liquid instrumentation methods MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form.
- MeSH
- Dasatinib analysis MeSH
- Electrophoresis, Capillary * MeSH
- Chemistry, Pharmaceutical methods standards MeSH
- Humans MeSH
- Limit of Detection MeSH
- Reproducibility of Results MeSH
- Spectrophotometry * MeSH
- Tablets chemistry standards MeSH
- Chromatography, High Pressure Liquid * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sequential Injection Chromatography (SIC) evolved from fast and automated non-separation Sequential Injection Analysis (SIA) into chromatographic separation method for multi-element analysis. However, the speed of the measurement (sample throughput) is due to chromatography significantly reduced. In this paper, a sub-1min separation using medium polar cyano monolithic column (5mm×4.6mm) resulted in fast and green separation with sample throughput comparable with non-separation flow methods The separation of three synthetic water-soluble dyes (sunset yellow FCF, carmoisine and green S) was in a gradient elution mode (0.02% ammonium acetate, pH 6.7 - water) with flow rate of 3.0mLmin-1corresponding with sample throughput of 30h-1. Spectrophotometric detection wavelengths were set to 480, 516 and 630nm and 10Hz data collection rate. The performance of the separation was described and discussed (peak capacities 3.48-7.67, peak symmetries 1.72-1.84 and resolutions 1.42-1.88). The method was represented by validation parameters: LODs of 0.15-0.35mgL-1, LOQs of 0.50-1.25mgL-1, calibration ranges 0.50-150.00mgL-1(r>0.998) and repeatability at 10.0mgL-1of RSD≤0.98% (n=6). The method was used for determination of the dyes in "forest berries" colored pharmaceutical cough-cold formulation. The sample matrix - pharmaceuticals and excipients were not interfering with vis determination because of no retention in the separation column and colorless nature. The results proved the concept of fast and green chromatography approach using very short medium polar monolithic column in SIC.
- MeSH
- Coloring Agents MeSH
- Chromatography MeSH
- Chemistry, Pharmaceutical methods MeSH
- Drug Compounding MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
On-line sample pretreatment (clean-up and analyte preconcentration) is for the first time coupled to sequential injection chromatography. The approach combines anion-exchange solid-phase extraction and the highly effective pentafluorophenylpropyl (F5) fused-core particle column for separation of eight sulfonamide antibiotics with similar structures (sulfathiazole, sulfanilamide, sulfacetamide, sulfadiazine, sulfamerazine, sulfadimidine, sulfamethoxazole and sulfadimethoxine). The stationary phase was selected after a critical comparison of the performance achieved by three fused-core reversed phase columns (Ascentis(®) Express RP-Amide, Phenyl-Hexyl, and F5) and two monolithic columns (Chromolith(®) High Resolution RP-18 and CN). Acetonitrile and acetate buffer pH 5.0 at 0.60 mL min(-1) were used as mobile phase to perform the separations before spectrophotometric detection. The first mobile phase was successfully used as eluent from SPE column ensuring transfer of a narrow zone to the chromatographic column. Enrichment factors up to 39.2 were achieved with a 500 µL sample volume. The developed procedure showed analysis time <10.5 min, resolutions >1.83 with peak symmetry ≤1.52, LODs between 4.9 and 27 µg L(-1), linear response ranges from 30.0 to 1000.0 µg L(-1) (r(2)>0.996) and RSDs of peak heights <2.9% (n=6) at a 100 µg L(-1) level and enabled the screening control of freshwater samples contaminated at the 100 µg L(-1) level. The proposed approach expanded the analytical potentiality of SIC and avoided the time-consuming batch sample pretreatment step, thus minimizing risks of sample contamination and analyte losses.
- MeSH
- Anti-Bacterial Agents analysis isolation & purification MeSH
- Water Pollutants, Chemical analysis isolation & purification MeSH
- Equipment Design MeSH
- Solid Phase Extraction instrumentation MeSH
- Limit of Detection MeSH
- Flow Injection Analysis instrumentation MeSH
- Rivers chemistry MeSH
- Sulfonamides analysis isolation & purification MeSH
- Chromatography, High Pressure Liquid instrumentation MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
A novel approach for automation of Micro-Extraction by Packed Sorbent (MEPS), a solid phase extraction technique, is presented, enabling precise and repeatable liquid handling due to the employment of sequential injection technique. The developed system was used for human urine sample clean-up and pre-concentration of betaxolol before its separation and determination. A commercial MEPS C-18 cartridge was integrated into an SIChrom™ system. The chromatographic separation was performed on a monolithic High Resolution C18 (50×4.6 mm) column which was coupled on-line in the system with Micro-Extraction using an additional selection valve. A mixture of acetonitrile and aqueous solution of 0.5% triethylamine with acetic acid, pH adjusted to 4.5 in ratio 30:70 was used as a mobile phase for elution of betaxolol from MEPS directly onto the monolithic column where the separation took place. Betaxolol was quantified by a fluorescence detector at wavelengths λ(ex)=220 nm and λ(em)=305 nm. The linear calibration range of 5-400 ng mL(-1), with limit of detection 1.5 ng mL(-1) and limit of quantification 5 ng mL(-1) and correlation r=0.9998 for both the standard and urine matrix calibration were achieved. The system recovery was 105±5%; 100±4%; 108±1% for three concentration levels of betaxolol in 10 times diluted urine - 5, 20 and 200 ng mL(-1), respectively.
- MeSH
- Urinalysis instrumentation methods MeSH
- Betaxolol isolation & purification urine MeSH
- Chromatography methods MeSH
- Equipment Design MeSH
- Spectrometry, Fluorescence MeSH
- Injections * MeSH
- Humans MeSH
- Solid Phase Microextraction methods MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The use of small scale renewable sorbent material for automated solid phase extraction of multi-residue pharmaceuticals in environmental samples exploiting the sequential injection analysis-bead injection with direct coupling to liquid chromatography-electrospray ionization tandem mass spectrometry (SIA-BI-μSPE-LC-ESI-MS/MS) is presented to determine beta-blockers, namely atenolol, sotalol, pindolol, acebutolol, timolol, metoprolol, labetalol, carazolol, propranolol and betaxolol. These compounds yielded the same product ions, therefore were affected in terms of quantification when flow injection analysis-mass spectrometry (FIA-MS) was used. Thus, analytes and matrix present in the sample travel together into the ionization source which can seriously affect the ionization efficiency and analyte signals due to monitoring over a short time period. Graphical abstract A two-dimensional analysis involving a time dimension (retention time) and an m/z dimension (fragmentation ion) is promising for the various sample types. Using the developed method, absolute recoveries percentages of 10 mL of sample loading volume were >91% for all β-blockers with enrichment factor of 62-74, limits of detection of 0.005-0.07 μg L(-1), limits of quantification of 0.01-0.23 μg L(-1), enrichment factor of 62-72 and repeatability within range 7-12%. This developed method is suggested to be used as quantitative screening technique for drugs of abuse or persistent contamination using different kinds of sorbent materials and complex matrix such as biological fluid sample as well.
- MeSH
- Chromatography, Liquid methods MeSH
- Solid Phase Extraction methods MeSH
- Spectrometry, Mass, Electrospray Ionization methods MeSH
- Limit of Detection MeSH
- Reproducibility of Results MeSH
- Tandem Mass Spectrometry methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this work, the applicability of Sequential Injection Chromatography for the determination of transition metals in water is evaluated for the separation of copper(II), zinc(II), and iron(II) cations. Separations were performed using a Dionex IonPAC™ guard column (50mm×2mm i.d., 9 µm). Mobile phase composition and post-column reaction were optimized by modified SIMPLEX method with subsequent study of the concentration of each component. The mobile phase consisted of 2,6-pyridinedicarboxylic acid as analyte-selective compound, sodium sulfate, and formic acid/sodium formate buffer. Post-column addition of 4-(2-pyridylazo)resorcinol was carried out for spectrophotometric detection of the analytes׳ complexes at 530nm. Approaches to achieve higher robustness, baseline stability, and detection sensitivity by on-column stacking of the analytes and initial gradient implementation as well as air-cushion pressure damping for post-column reagent addition were studied. The method allowed the rapid separation of copper(II), zinc(II), and iron(II) within 6.5min including pump refilling and aspiration of sample and 1mmol HNO3 for analyte stacking on the separation column. High sensitivity was achieved applying an injection volume of up to 90µL. A signal repeatability of<2% RSD of peak height was found. Analyte recovery evaluated by spiking of different natural water samples was well suited for routine analysis with sub-micromolar limits of detection.
- MeSH
- Water Pollutants, Chemical analysis MeSH
- Chromatography methods MeSH
- Formates chemistry MeSH
- Copper analysis MeSH
- Mineral Waters analysis MeSH
- Drinking Water analysis MeSH
- Pyridines chemistry MeSH
- Resorcinols chemistry MeSH
- Sulfates chemistry MeSH
- Fresh Water analysis MeSH
- Iron analysis MeSH
- Zinc analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of this work was to extend the chromatographic capabilities of the SIC system. Despite the particle-packed columns reaching system pressures of ≤ 610 PSI, their conditions matched those of a commercially produced and optimised SIC system (SIChrom™ (FIAlab(®), USA)) with a 8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with a 4 mL reservoir and maximum system pressure of ≤ 1000 PSI. The selectivity of each of the tested columns, Ascentis(®) Express RP-Amide, Ascentis(®) Express Phenyl-Hexyl and Ascentis(®) Express C18 (30 mm × 4.6mm, core-shell particle size 2.7 μm), was compared by their ability to separate seven phenolic acids that are secondary metabolite substances widely distributed in plants. The separations of all of the components were performed by isocratic elution using binary mobile phases composed of acetonitrile and 0.065% phosphoric acid at pH 2.4 (a specific ratio was used for each column) at a flow-rate of 0.60 mL/min. The volume of the mobile phase was 3.8 mL for each separation. The injection volume of the sample was 10 μL for each separation. The UV detection wavelengths were set to 250, 280 and 325 nm. The RP-Amide column provided the highest chromatographic resolution and allowed for complete baseline separation of protocatechuic, syringic, vanillic, ferulic, sinapinic, p-coumaric and o-coumaric acids. The Phenyl-Hexyl and C18 columns were unable to completely separate the tested mixture, syringic and vanillic acid and ferulic and sinapinic acids could not be separated from one another. The analytical parameters were a LOD of 0.3 mg L(-1), a LOQ of 1.0 mg L(-1), a calibration range of 1.0-50.0 (100.0) mg L(-1) (r>0.997) and a system precision of 10 mg L(-1) with a RSD ≤ 1.65%. The high performance of the chromatography process with the RP-Amide column under optimised conditions was highlighted and well documented (HETP values ≤ 10 μm, peak symmetry ≤ 1.33, resolution ≥ 1.87 and time for one analysis <8.0 min). The results of these experiments confirmed the benefits of extending chromatographic selectivity using core-shell particle column technology in a SIC manifold.
- MeSH
- Chromatography, Reverse-Phase * MeSH
- Hydroxybenzoates analysis MeSH
- Injections MeSH
- Calibration MeSH
- Molecular Structure MeSH
- Spectrophotometry, Ultraviolet MeSH
- Particle Size MeSH
- Chromatography, High Pressure Liquid * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH