Transcriptome analyses
Dotaz
Zobrazit nápovědu
Ancient origins, profound ecological divergence, and extensive hybridization make the fire-bellied toads Bombina bombina and B. variegata (Anura: Bombinatoridae) an intriguing test case of ecological speciation. Previous modeling has proposed that the narrow Bombina hybrid zones represent strong barriers to neutral introgression. We test this prediction by inferring the rate of gene exchange between pure populations on either side of the intensively studied Kraków transect. We developed a method to extract high confidence sets of orthologous genes from de novo transcriptome assemblies, fitted a range of divergence models to these data and assessed their relative support with analytic likelihood calculations. There was clear evidence for postdivergence gene flow, but, as expected, no perceptible signal of recent introgression via the nearby hybrid zone. The analysis of two additional Bombina taxa (B. v. scabra and B. orientalis) validated our parameter estimates against a larger set of prior expectations. Despite substantial cumulative introgression over millions of years, adaptive divergence of the hybridizing taxa is essentially unaffected by their lack of reproductive isolation. Extended distribution ranges also buffer them against small-scale environmental perturbations that have been shown to reverse the speciation process in other, more recent ecotypes.
- MeSH
- fylogeneze MeSH
- hybridizace genetická * MeSH
- rozšíření zvířat MeSH
- tok genů * MeSH
- transkriptom MeSH
- žáby genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- hmyzí geny MeSH
- Isoptera genetika fyziologie MeSH
- symbióza * MeSH
- Termitomyces fyziologie MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
- MeSH
- Euglena longa klasifikace cytologie genetika MeSH
- fotosyntéza * MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- plastidy genetika MeSH
- proteiny chloroplastové genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, presenting the biggest global threat to animal farming in recorded history. Despite the importance of ASFV, little is known about the mechanisms and regulation of ASFV transcription. Using RNA sequencing methods, we have determined total RNA abundance, transcription start sites, and transcription termination sites at single-nucleotide resolution. This allowed us to characterize DNA consensus motifs of early and late ASFV core promoters, as well as a polythymidylate sequence determinant for transcription termination. Our results demonstrate that ASFV utilizes alternative transcription start sites between early and late stages of infection and that ASFV RNA polymerase (RNAP) undergoes promoter-proximal transcript slippage at 5' ends of transcription units, adding quasitemplated AU- and AUAU-5' extensions to mRNAs. Here, we present the first much-needed genome-wide transcriptome study that provides unique insight into ASFV transcription and serves as a resource to aid future functional analyses of ASFV genes which are essential to combat this devastating disease.IMPORTANCE African swine fever virus (ASFV) causes incurable and often lethal hemorrhagic fever in domestic pigs. In 2020, ASF presents an acute and global animal health emergency that has the potential to devastate entire national economies as effective vaccines or antiviral drugs are not currently available (according to the Food and Agriculture Organization of the United Nations). With major outbreaks ongoing in Eastern Europe and Asia, urgent action is needed to advance our knowledge about the fundamental biology of ASFV, including the mechanisms and temporal control of gene expression. A thorough understanding of RNAP and transcription factor function, and of the sequence context of their promoter motifs, as well as accurate knowledge of which genes are expressed when and the amino acid sequence of the encoded proteins, is direly needed for the development of antiviral drugs and vaccines.
- MeSH
- africký mor prasat prevence a kontrola MeSH
- aktivace transkripce genetika MeSH
- genetická transkripce genetika MeSH
- genom virový MeSH
- hemoragické horečky virové virologie MeSH
- prasata virologie MeSH
- sekvence aminokyselin MeSH
- Sus scrofa virologie MeSH
- terminace genetické transkripce MeSH
- transkriptom genetika MeSH
- virové proteiny genetika MeSH
- virus afrického moru prasat genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent technological advances have made next-generation sequencing (NGS) a popular and financially accessible technique allowing a broad range of analyses to be done simultaneously. A huge amount of newly generated NGS data, however, require advanced software support to help both in analyzing the data and biologically interpreting the results. In this article, we describe SATrans (Software for Annotation of Transcriptome), a software package providing fast and robust functional annotation of novel sequences obtained from transcriptome sequencing. Moreover, it performs advanced gene ontology analysis of differentially expressed genes, thereby helping to interpret biologically-and in a user-friendly form-the quantitative changes in gene expression. The software is freely available and provides the possibility to work with thousands of sequences using a standard personal computer or notebook running on the Linux operating system.
OBJECTIVES: Maternal smoking has a negative effect on all stages of pregnancy. Tobacco smoke-related defects are well established at the clinical level; however, less is known about molecular mechanisms underlying these pathologic conditions. We thus performed a comprehensive analysis of transcriptome alterations induced by smoking in maternal and fetal cells. STUDY DESIGN: Samples of peripheral blood (PB), placenta (PL), and cord blood (UCB) were obtained from pregnant smokers (n = 20) and gravidas without significant exposure to tobacco smoke (n = 52). Gene expression profiles were assayed by Illumina Expression Beadchip v3 for analysis of 24,526 transcripts. The quantile method was used for normalization. Differentially expressed genes were analyzed in the Limma package and the P-values were corrected for multiple testing. Unsupervised hierarchical clustering was performed using average linkage and Euclidean distance. The enrichment of deregulated genes in biological processes was analyzed in DAVID database. RESULTS: Comparative analyses defined significant deregulation of 193 genes in PB, 329 genes in PL, and 49 genes in UCB of smokers. The deregulated genes were mainly related to xenobiotic metabolism, oxidative stress, inflammation, immunity, hematopoiesis, and vascularization. Notably, functional annotation of the affected genes identified several deregulated pathways associated with autoimmune diseases in the newborns of smokers. CONCLUSIONS: The study demonstrated maternal smoking causes significant changes in transcriptome of placental and fetal cells that deregulate numerous biological processes important for growth and development of the fetus. An activation of fetal CYP genes showed a limited ability of the placenta to modulate toxic effects of maternal tobacco use.
- MeSH
- dospělí MeSH
- fetální krev metabolismus MeSH
- kohortové studie MeSH
- kotinin krev MeSH
- kouření škodlivé účinky krev genetika metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- placenta metabolismus patologie MeSH
- plod patologie MeSH
- RNA chemie genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- těhotenství MeSH
- transkriptom fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5th day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways
- MeSH
- genetická transkripce MeSH
- hepatektomie MeSH
- játra * metabolismus MeSH
- krysa rodu rattus MeSH
- metabolismus lipidů MeSH
- modely nemocí na zvířatech MeSH
- nemoci jater * genetika metabolismus veterinární MeSH
- potkani Wistar MeSH
- receptory aktivované proliferátory peroxizomů metabolismus MeSH
- regenerace jater * MeSH
- regulace genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control.
- MeSH
- klíště genetika metabolismus MeSH
- sekvenční analýza RNA * MeSH
- skot MeSH
- stanovení celkové genové exprese * MeSH
- střeva metabolismus patologie MeSH
- transkriptom fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. RESULTS: An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25-30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. CONCLUSIONS: In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari's protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
- MeSH
- antiparazitární látky farmakologie terapeutické užití MeSH
- faktory virulence MeSH
- fylogeneze MeSH
- kapři mikrobiologie MeSH
- Myxozoa genetika růst a vývoj MeSH
- nemoci ryb parazitologie terapie MeSH
- objevování léků MeSH
- parazitární nemoci u zvířat parazitologie terapie MeSH
- proteasy genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology.
- MeSH
- alternativní sestřih MeSH
- buněčná diferenciace genetika MeSH
- kultivované buňky MeSH
- lebka fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- osteoblasty fyziologie MeSH
- osteogeneze genetika MeSH
- RNA analýza MeSH
- stanovení celkové genové exprese MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH