ecological function
Dotaz
Zobrazit nápovědu
Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences.
- MeSH
- Burkholderiaceae genetika izolace a purifikace MeSH
- DNA bakterií genetika MeSH
- ekologie MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genomika * MeSH
- plankton genetika izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Frog locomotion has attracted wide scientific interest because of the unusual and derived morphology of the frog pelvic girdle and hind limb. Previous authors have suggested that the design of the frog locomotor system evolved towards a specialized jumping morphology early in the radiation of the group. However, data on locomotion in frogs are biased towards a few groups and most of the ecological and functional diversity remains unexplored. Here, we examine the kinematics of swimming in eight species of frog with different ecologies. We use cineradiography to quantify movements of skeletal elements from the entire appendicular skeleton. Our results show that species with different ecologies do differ in the kinematics of swimming, with the speed of limb extension and especially the kinematics of the midfoot being different. Our results moreover suggest that this is not a phylogenetic effect because species from different clades with similar ecologies converge on the same swimming kinematics. We conclude that it is important to analyze frog locomotion in a broader ecological and evolutionary context if one is to understand the evolutionary origins of this behavior.
BACKGROUND: The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. METHODOLOGY/PRINCIPAL FINDINGS: To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. CONCLUSIONS/SIGNIFICANCE: Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths.
- MeSH
- Bayesova věta MeSH
- biologická adaptace genetika fyziologie MeSH
- biologická evoluce * MeSH
- Campanulaceae anatomie a histologie MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze * MeSH
- modely genetické MeSH
- stonky rostlin anatomie a histologie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
- MeSH
- ekologie * MeSH
- ekosystém MeSH
- epigeneze genetická * MeSH
- metylace DNA MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- Chrysophyceae genetika růst a vývoj MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- haplotypy genetika MeSH
- mitochondriální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant-termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant-termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.
- MeSH
- DNA analýza MeSH
- ekologie MeSH
- Formicidae genetika fyziologie MeSH
- Isoptera genetika fyziologie MeSH
- predátorské chování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Urban soils pollution by trace elements arouses the growing interest in China. The aim of this study was to assess urban soil pollution by As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in China and the possible impacts on urban inhabitants and urban green spaces (UGS). Data from more than 17,000 samples were applied to characterize the status of 101 cities. The pollution assessment proved that 11% of the cities are heavily polluted. According to the Hazard Index, the value of risk for the infant population in 15 cities exceed the standardly accepted tolerable levels. The carcinogenic risk assessment demonstrated the potential threat in the cities with the total population approximately 20,566,900. Cr and As were detected to be the most hazardous elements. UGS may be seriously threatened by trace elements toxicity in 38 cities. Cd was found to be the riskiest element for UGS. Ecosystem services of UGS can be significantly disrupted under the current situation in China and their status is expected to deteriorate in the future. For this reason, it is essential to alter the policy of the urbanization process and develop functional concepts of urban green infrastructures adapted to the high level of contamination which shall improve human well-being in China.
- MeSH
- ekosystém MeSH
- hodnocení rizik MeSH
- látky znečišťující půdu * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- půda MeSH
- stopové prvky * MeSH
- těžké kovy * analýza MeSH
- velkoměsta MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- přehledy MeSH
- Geografické názvy
- Čína MeSH
- velkoměsta MeSH
The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- ekologie * MeSH
- ekosystém MeSH
- ostrovy MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- ostrovy MeSH