Amiracarus pliocennatus n. gen., n. sp. is described based on fossils found in Pliocene and Pleistocene clastic sediments in caves of the Slovenian Classical Karst (Kras). Diagnosis and relationships of the new genus are given and relationships within the extant species of the genus are discussed as well as variability and reliability of some characters, used for species differentiation. Amiracarus senensis (Bernini 1975) n. comb. is proposed as a type species of the new genus, and other four extant species are newly placed in Amiracarus n. gen.: A. abeloosi (Lions 1978) n. comb., A. discrepans (Mahunka 1966) n. comb., A. grootaerti (Wauthy &Ducarme 2011) n. comb. and A. similis (Subìas & Iturrondobeitia 1978) n. comb. Finding of a fossil individual of M. senensis Bernini 1975 in Ponicova Cave of South-West Carpathians in Romania is reported and a description of this individual is given. Relationships with the genus Miracarus Kunst 1959 are discussed and a new diagnosis of this genus is also given, along with the redescription of its type species, M. hurkai Kunst 1959.
- MeSH
- Animal Structures anatomy & histology growth & development MeSH
- Phylogeny MeSH
- Caves MeSH
- Mites anatomy & histology classification growth & development MeSH
- Organ Size MeSH
- Body Size MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Romania MeSH
- MeSH
- Anthropology, Physical methods MeSH
- Archaeology methods MeSH
- Bone and Bones MeSH
- Skull MeSH
- Humans MeSH
- Paleontology methods MeSH
- Funeral Rites history MeSH
- Wounds and Injuries MeSH
- Check Tag
- Humans MeSH
- Geographicals
- Czechoslovakia MeSH
Murid rodents (Rodentia: Muridae) represent the most diverse and abundant mammalian family. In this study, we provide a refined set of fossil calibrations which is used to reconstruct a dated phylogeny of the family using a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 161 species representing 82 murid genera from four extant subfamilies (Deomyinae, Gerbillinae, Lophiomyinae and Murinae). In comparison with previous studies on murid or muroid rodents, our work stands out for the implementation of nine robust fossil constraints within the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also subjected to several cross-validation analyses. The resulting phylogeny is consistent with previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal timeframe indicates that the murid family likely originated in the course of the Early Miocene, 22.0-17.0 million years ago (Ma), and that most major lineages (i.e. tribes) started diversifying ca. 10 Ma. Historical biogeography analyses support the tropical origin for the family, with an initial internal split (vicariance event) between Afrotropical and Oriental (Indomalaya and Philippines) lineages. During the course of their diversification, the biogeographic pattern of murids is marked by several dispersal events toward the Australasian and the Palearctic regions. The Afrotropical region was also secondarily colonized at least three times from the Indomalaya, indicating that the latter region has acted as a major centre of diversification for the family.
- MeSH
- Bayes Theorem MeSH
- Time Factors MeSH
- Phylogeny * MeSH
- Phylogeography MeSH
- Calibration MeSH
- Muridae classification MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sex is a biological trait fundamental to the study of hominin fossils. Among the many questions that can be addressed are those related to taxonomy, biological variability, sexual dimorphism, paleoobstetrics, funerary selection, and paleodemography. While new methodologies such as paleogenomics or paleoproteomics can be used to determine sex, they have not been systematically applied to Pleistocene human remains due to their destructive nature. Therefore, we estimated sex from the coxal bone of the newly discovered pelvic remains of the Regourdou 1 Neandertal (Southwest France, MIS 5) based on morphological and metric data employing two methods that have been recently revised and shown to be reliable in multiple studies. Both methods calculate posterior probabilities of the estimate. The right coxal bone of Regourdou 1 was partially reconstructed providing additional traits for sex estimation. These methods were cross validated on 14 sufficiently preserved coxal bones of specimens from the Neandertal lineage. Our results show that the Regourdou 1 individual, whose postcranial skeleton is not robust, is a male, and that previous sex attributions of comparative Neandertal specimens are largely in agreement with those obtained here. Our results encourage additional morphological research of fossil hominins in order to develop a set of methods that are applicable, reliable, and reproducible.
- MeSH
- Genomics MeSH
- Hominidae * MeSH
- Humans MeSH
- Neanderthals * anatomy & histology MeSH
- Paleontology MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- France MeSH
The origin of living Homo sapiens has once again been the subject of much debate. Genetic data on present human population relationships and data from the Pleistocene fossil hominid record are used to compare two contrasting models for the origin of modern humans. Both genetics and paleontology support a recent African origin for modern humans rather than a long period of multiregional evolution accompanied by gene flow.
- MeSH
- Biological Evolution * MeSH
- Haplorhini anatomy & histology genetics MeSH
- Skull anatomy & histology MeSH
- Humans MeSH
- Paleontology * MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa MeSH
- Czechoslovakia MeSH
- China MeSH
Scaling evolutionary trees to time is essential for understanding the origins of clades. Recently developed methods allow including the entire fossil record known for the group of interest and eliminated the need for specifying prior distributions for node ages. Here we apply the fossilized birth-death (FBD) approach to reconstruct the diversification timeline of the viperines (subfamily Viperinae). Viperinae are an Old World snake subfamily comprising 102 species from 13 genera. The fossil record of vipers is fairly rich and well assignable to clades due to the unique vertebral and fang morphology. We use an unprecedented sampling of 83 modern species and 13 genetic markers in combination with 197 fossils representing 28 extinct taxa to reconstruct a time-calibrated phylogeny of the Viperinae. Our results suggest a late Eocene-early Oligocene origin with several diversification events following soon after the group's establishment. The age estimates inferred with the FBD model correspond to those from previous studies that were based on node dating but FBD provides notably narrower credible intervals around the node ages. Viperines comprise two African and an Eurasian clade, but the ancestral origin of the subfamily is ambiguous. The most parsimonious scenarios require two transoceanic dispersals over the Tethys Sea during the Oligocene.
- MeSH
- Biological Evolution MeSH
- Models, Biological MeSH
- Phylogeny MeSH
- Genetic Markers * MeSH
- Sequence Analysis, DNA MeSH
- Viperidae classification genetics MeSH
- Computational Biology methods MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Trilobites offer the opportunity to explore postembryonic development within the fossil record of arthropod evolution. In contrast to most trilobites, the Silurian proetid Aulacopleura konincki from the Czech Republic exhibits marked variation in the mature number of thoracic segments, with five morphs with 18-22 thoracic segments. The combination of abundant articulated specimens available from a narrow stratigraphic interval and segmental intraspecific variation makes this trilobite singularly useful for studying postembryonic growth and segmentation. Trunk segmentation followed a hemianamorphic pattern, as seen in other arthropods and as characteristic of the Trilobita; during a first anamorphic phase, segments were accreted, while in the subsequent epimorphic phase, segmentation did not proceed further despite continued growth. Size increment during the anamorphic phase was targeted and followed Dyar's rule, a geometric progression typical of many arthropods. We consider alternative hypotheses for the control of the switch from anamorphic to epimorphic phases of development. Our analysis favors a scenario in which the mature number of thoracic segments was determined quite early in development rather than at a late stage in association with a critical size threshold. This study demonstrates that hypotheses concerning developmental pattern and control can be tested in organisms belonging to an extinct clade.
- MeSH
- Biological Evolution * MeSH
- Models, Biological * MeSH
- Arthropods growth & development MeSH
- Body Weights and Measures MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Geographicals
- Czech Republic MeSH
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
- MeSH
- Biological Evolution * MeSH
- Ecology MeSH
- Phylogeny * MeSH
- Insecta anatomy & histology radiation effects MeSH
- Amber MeSH
- Magnoliopsida chemistry MeSH
- Pollen chemistry MeSH
- Radiation MeSH
- Fossils anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to map the matrix (Ca, P) and trace (Ba, Sr, Zn) elements in the root section of a fossilized brown bear (Ursus arctos) tooth. Multielemental analysis was performed on a (2.5 × 1.5)cm(2) area. For elemental distribution, a UP 213 laser ablation system was coupled either with a quadrupole or a time of flight ICP-MS. The cementum and dentine on the slice of the sample surface were clearly distinguishable, especially changes in elemental distribution in the summer and winter bands in the fossil root dentine. Migration and diet of U. arctos were determined on the basis of fluctuations in Sr/Zn ratio and their contents. Quantification was accomplished with standard reference material of bone meal (NIST 1486) and by the use of electron microprobe analysis (EMPA). Changes in Sr/Zn and Sr/Ba ratios relating to the season, and composition of food during the lifetime of the animal are discussed on basis of analysis of light stable isotopes. It was observed that there was an increase in the Sr/Zn ratio during the winter season caused by a reduction of food intake during hibernation. Above mentioned inferences drawn from elemental data obtained by LA-ICP-MS were confirmed independently by determination of carbon, nitrogen and strontium isotopes. Moreover, diagenesis and its interfering influence on the biogenic composition of cementum and dentine were resolved. According to the distribution and/or content of the element of interest, post-mortem alterations were revealed. Namely, U, Na, Fe, Mg and F predicate about the suitability of the selected area for determination of migration and diet.
- MeSH
- Mass Spectrometry methods MeSH
- Lasers MeSH
- Ursidae anatomy & histology MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH