human–machine interface
Dotaz
Zobrazit nápovědu
Brain-computer interface (BCI) provides direct communication between the brain and an external device. BCI systems have become a trendy field of research in recent years. These systems can be used in a variety of applications to help both disabled and healthy people. Concerning significant BCI progress, we may assume that these systems are not very far from real-world applications. This review has taken into account current trends in BCI research. In this survey, 100 most cited articles from the WOS database were selected over the last 4 years. This survey is divided into several sectors. These sectors are Medicine, Communication and Control, Entertainment, and Other BCI applications. The application area, recording method, signal acquisition types, and countries of origin have been identified in each article. This survey provides an overview of the BCI articles published from 2016 to 2020 and their current trends and advances in different application areas.
- MeSH
- elektroencefalografie MeSH
- lidé MeSH
- mozek MeSH
- pomůcky pro komunikaci postižených * MeSH
- rozhraní mozek-počítač * MeSH
- uživatelské rozhraní počítače MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The goal of every human being on our planet is to improve the living conditions not only of his life, but also of all humanity. Digitization, dynamic development of technological equipment, unique software solutions and the transfer of human capabilities into the form of data enable the gradual achievement of this goal. The human brain is the source of all activities (physical, mental, decision-making, etc.) that a person performs. Therefore, the main goal of research is its functioning and the possibility to at least partially replace this functioning by external devices connected to a computer. The Brain-Computer Interface (BCI) is a term which represents a tool for performing external activities through sensed signals from the brain. This document describes various techniques that can be used to collect the neural signals. The measurement can be invasive or non-invasive. Electroencephalography (EEG) is the most studied non-invasive method and is therefore described in more detail in the presented paper. Once the signals from the brain are scanned, they need to be analysed in order to interpret them as computer commands. The presented methods of EEG signal analysis have advantages and disadvantages, either temporal or spatial. The use of the inverse EEG problem can be considered as a new trend to solve non-invasive high-resolution BCI.
- MeSH
- blízká infračervená spektroskopie metody MeSH
- diagnostické techniky neurologické MeSH
- elektroencefalografie metody přístrojové vybavení MeSH
- elektrookulografie metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- magnetoencefalografie metody MeSH
- neurozobrazování MeSH
- pozitronová emisní tomografie MeSH
- rozhraní mozek-počítač * MeSH
- zrakové evokované potenciály MeSH
- Check Tag
- lidé MeSH
- MeSH
- dospělí MeSH
- elektroencefalografie metody přístrojové vybavení využití MeSH
- experimenty na lidech MeSH
- financování organizované MeSH
- kognitivní evokované potenciály P300 fyziologie MeSH
- lidé MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- statistika jako téma metody MeSH
- systémy člověk-stroj MeSH
- učení fyziologie MeSH
- uživatelské rozhraní počítače MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
- MeSH
- algoritmy * MeSH
- artefakty MeSH
- elektroencefalografie * metody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- rozhraní mozek-počítač MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- elektroencefalografie metody přístrojové vybavení využití MeSH
- elektrofyziologické jevy MeSH
- experimenty na zvířatech MeSH
- financování organizované MeSH
- Haplorrhini fyziologie MeSH
- lasery využití MeSH
- lidé MeSH
- mozková kůra MeSH
- myši fyziologie MeSH
- počítačové zpracování obrazu metody přístrojové vybavení využití MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- systémy člověk-stroj MeSH
- uživatelské rozhraní počítače MeSH
- zrakové evokované potenciály fyziologie MeSH
- Check Tag
- lidé MeSH
- myši fyziologie MeSH
BACKGROUND: Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES: Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS: Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS: The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS: Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- elektrokardiografie MeSH
- esenciální tremor * MeSH
- lidé MeSH
- rozhraní mozek-počítač * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- MeSH
- avatar MeSH
- lidé MeSH
- netholismus * MeSH
- řízené strojové učení MeSH
- strojové učení * MeSH
- uživatelské rozhraní počítače MeSH
- videohry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Depression is a major depressive disorder characterized by persistent sadness and a sense of worthlessness, as well as a loss of interest in pleasurable activities, which leads to a variety of physical and emotional problems. It is a worldwide illness that affects millions of people and should be detected at an early stage to prevent negative effects on an individual's life. Electroencephalogram (EEG) is a non-invasive technique for detecting depression that analyses brain signals to determine the current mental state of depressed subjects. In this study, we propose a method for automatic feature extraction to detect depression by first constructing a graph from the dataset where the nodes represent the subjects in the dataset and where the edge weights obtained using the Euclidean distance reflect the relationship between them. The Node2vec algorithmic framework is then used to compute feature representations for nodes in a graph in the form of node embeddings ensuring that similar nodes in the graph remain near in the embedding. These node embeddings act as useful features which can be directly used by classification algorithms to determine whether a subject is depressed thus reducing the effort required for manual handcrafted feature extraction. To combine the features collected from the multiple channels of the EEG data, the method proposes three types of fusion methods: graph-level fusion, feature-level fusion, and decision-level fusion. The proposed method is tested on three publicly available datasets with 3, 20, and 128 channels, respectively, and compared to five state-of-the-art methods. The results show that the proposed method detects depression effectively with a peak accuracy of 0.933 in decision-level fusion, which is the highest among the state-of-the-art methods.
- MeSH
- algoritmy MeSH
- deprese diagnóza MeSH
- depresivní porucha unipolární * diagnóza MeSH
- elektroencefalografie MeSH
- lidé MeSH
- rozhraní mozek-počítač * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- BCI - brain-computer interface, Locked-in syndrome, deeferentovaný stav, minimální vědomí,
- MeSH
- bezvědomí diagnóza MeSH
- diferenciální diagnóza MeSH
- ergonomie metody MeSH
- kóma diagnóza MeSH
- kvadruplegie komplikace MeSH
- lidé MeSH
- perzistentní vegetativní stav MeSH
- poruchy vědomí diagnóza MeSH
- systémy člověk-stroj MeSH
- Check Tag
- lidé MeSH
In this work, we extend the previously proposed approach of improving mutual perception during human-robot collaboration by communicating the robot's motion intentions and status to a human worker using hand-worn haptic feedback devices. The improvement is presented by introducing spatial tactile feedback, which provides the human worker with more intuitive information about the currently planned robot's trajectory, given its spatial configuration. The enhanced feedback devices communicate directional information through activation of six tactors spatially organised to represent an orthogonal coordinate frame: the vibration activates on the side of the feedback device that is closest to the future path of the robot. To test the effectiveness of the improved human-machine interface, two user studies were prepared and conducted. The first study aimed to quantitatively evaluate the ease of differentiating activation of individual tactors of the notification devices. The second user study aimed to assess the overall usability of the enhanced notification mode for improving human awareness about the planned trajectory of a robot. The results of the first experiment allowed to identify the tactors for which vibration intensity was most often confused by users. The results of the second experiment showed that the enhanced notification system allowed the participants to complete the task faster and, in general, improved user awareness of the robot's movement plan, according to both objective and subjective data. Moreover, the majority of participants (82%) favoured the improved notification system over its previous non-directional version and vision-based inspection.
- MeSH
- hmat MeSH
- lidé MeSH
- robotika * MeSH
- ruka MeSH
- uživatelské rozhraní počítače MeSH
- zpětná vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH