mechanistic modeling
Dotaz
Zobrazit nápovědu
For most patients, the HIV viral load can be made undetectable by highly active antiretroviral treatments highly active antiretroviral therapy: the virus, however, cannot be eradicated. Thus, the major problem is to try to reduce the side effects of the treatment that patients have to take during their life time. We tackle the problem of monitoring the treatment dose, with the aim of giving the minimum dose that yields an undetectable viral load. The approach is based on mechanistic models of the interaction between virus and the immune system. It is shown that the "activated cells model," allows making good predictions of the effect of dose changes and, thus, could be a good basis for treatment monitoring. Then, we use the fact that in dynamical models, there is a nontrivial equilibrium point, that is with a virus load larger than zero, only if the reproductive number R(0) is larger than one. For reducing side effects, we may give a dose just above the critical dose corresponding to R(0) equal to 1. A prior distribution of the parameters of the model can be taken as the posterior arising from the analysis of previous clinical trials. Then the observations for a given patient can be used to dynamically tune the dose so that there is a high probability that the reproductive number is below one. The advantage of the approach is that it does not depend on a cost function, weighing side effects and efficiency of the drug. It is shown that it is possible to approach the critical dose if the model is correct. A sensitivity analysis assesses the robustness of the approach.
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- biometrie MeSH
- CD4-pozitivní T-lymfocyty účinky léků imunologie virologie MeSH
- HIV infekce farmakoterapie imunologie virologie MeSH
- klinické zkoušky jako téma statistika a číselné údaje MeSH
- látky proti HIV aplikace a dávkování škodlivé účinky MeSH
- lidé MeSH
- modely imunologické MeSH
- monitorování léčiv statistika a číselné údaje MeSH
- statistické modely * MeSH
- virová nálož účinky léků MeSH
- vysoce aktivní antiretrovirová terapie * škodlivé účinky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.
- MeSH
- adenosintrifosfát metabolismus MeSH
- biologické modely MeSH
- fruktosadifosfáty metabolismus MeSH
- Lactococcus lactis metabolismus MeSH
- metabolické sítě a dráhy MeSH
- metabolismus sacharidů * MeSH
- metoda Monte Carlo MeSH
- počítačová simulace MeSH
- statistické modely MeSH
- zpětná vazba fyziologická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The concept of the phylotypic stage has been strongly integrated into developmental biology, thanks mostly to drawings presented by Haeckel (Anthropogenie oder Entwicklungsgeschichte des Menschen, 1874). They are printed in every textbook as proof of the existence of the phylotypic stage and the fact of its conservation, albeit many times criticized as misleading and simplifying (Richardson in Develop Biol 172:412-421, 1995, Richardson et al. in Anat Embryo 196:91-106, 1997; Bininda-Emons et al. in Proc R Soc Lond 270:341-346, 2003). Although generally accepted by modern biology, doubt still exists concerning the very existence or the usefulness of the concept. What kind of evolutionary and developmental horizons does it open indeed? This article begins with the history of the concept, discusses its validity and draws this into connotation with the idea of a memory activated throughout the development. Barbieri (The organic codes. An introduction to semantic biology, 2003) considers the phylotypic stage to be a crucial boundary when the genetic program ceases to suffice for further development of the embryo, and supracellular memory of the body plan is activated. This moment clearly coincides with the commencing of the modular development of the embryo. In this article the nature of such putative memory will be discussed.
- MeSH
- aktivace transkripce MeSH
- anatomické modely MeSH
- biologická evoluce MeSH
- biologické modely MeSH
- DNA metabolismus MeSH
- Drosophila melanogaster MeSH
- fylogeneze MeSH
- homeoboxové geny MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- signální transdukce MeSH
- vývojová biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can conclude that the modulation of glycosylation in a sequential steady state approach in combination with mechanistic model represents an efficient and rational strategy to develop continuous processes with desired N-linked glycosylation patterns. Biotechnol. Bioeng. 2017;114: 1978-1990. © 2017 Wiley Periodicals, Inc.
- MeSH
- analýza selhání vybavení MeSH
- biologické modely * MeSH
- bioreaktory * MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- design s pomocí počítače MeSH
- design vybavení MeSH
- glykosylace MeSH
- monoklonální protilátky izolace a purifikace metabolismus MeSH
- perfuze přístrojové vybavení metody MeSH
- počítačová simulace MeSH
- polysacharidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Effects of chemicals are, in most cases, caused by internal concentrations within organisms which rely on uptake and elimination kinetics. These processes might be key components for assessing the effects of time-variable exposure of chemicals which regularly occur in aquatic systems. However, the knowledge of toxicokinetic patterns caused by time-variable exposure is limited, and gaining such information is complex. In this work, a previously developed mechanistic growth model of Myriophyllum spicatum is coupled with a newly developed toxicokinetic part, providing a model that is able to predict uptake and elimination of chemicals, as well as distribution processes between plant compartments (leaves, stems, roots) of M. spicatum. It is shown, that toxicokinetic patterns, at least for most of the investigated chemicals, can be calculated in agreement with experimental observations, by only calibrating two chemical- specific parameters, the cuticular permeability and a plant/water partition coefficient. Through the model-based determination of the cuticular permeabilities of Isoproturon, Iofensulfuron, Fluridone, Imazamox and Penoxsulam, their toxicokinetic pattern can be described with the model approach. For the use of the model for predicting toxicokinetics of other chemicals, where experimental data is not available, equations are presented that are based on the log (P oct/wat) of a chemical and estimate parameters that are necessary to run the model. In general, a method is presented to analyze time-variable exposure of chemicals more in detail without conducting time and labour intensive experiments.
Revealing the links between species functional traits, interaction strength and food-web structure is of paramount importance for understanding and predicting the relationships between food-web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functioning. Here, we combined modelling and laboratory experiments to investigate the effects of warming and enrichment on a terrestrial tritrophic system. We found that the food-web structure is highly variable and switches between exploitative competition and omnivory depending on the effects of temperature and enrichment on foraging behaviour and species interaction strength. Our model contributes to identifying the mechanisms that explain how environmental effects cascade through the food web and influence its topology. We conclude that considering environmental factors and flexible food-web structure is crucial to improve our ability to predict the impacts of global changes on ecosystem diversity and stability.
- MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- globální oteplování MeSH
- hmyz fyziologie MeSH
- potravní řetězec * MeSH
- teplota * MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH