microstructural characterization
Dotaz
Zobrazit nápovědu
BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes. METHODS: We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue. RESULTS AND CONCLUSIONS: Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.
- MeSH
- dospělí MeSH
- fenotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování patologie MeSH
- multiparametrická magnetická rezonance MeSH
- progrese nemoci MeSH
- průřezové studie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Tissue decellularization has emerged as a technique to provide an acellular, non-immunogenic scaffold that preserves the morphological features of native tissue. To study the possible effects of decellularization, investigating the mechanical behavior and the protein composition is crucial. In this study, we performed extension-inflation tests on native and decellularized porcine vena cava and investigated their microstructure using multiphoton microscopy. The mechanical behavior of both groups showed typical pressure-stretch curves of vascular structures with viscoelastic and nonlinear features. Importantly, no significant differences were found at inflation of 10, 20 and 30 mmHg, although some variability was observed in the decellularized scaffolds. When analyzing the results of the vessel wall multiphoton microscopy investigations, it was found that collagen fibers were packed in tortuous bundles in the media, but scattered in the adventitia. The fibers were oriented around 72° from the circumferential direction for both groups and at the same time equally distributed out-of-plane. Moreover, the collagen fibers diameter for media and adventitia was around 4 μm. Tortuosity and straightness were the same in the adventitia; however, the situation was different in the media, where the fibers in native samples were straighter than in decellularized scaffolds. Our findings show the potential of our protocol to obtain venous scaffolds that could be used for vascular reconstruction, as their mechanical properties are largely comparable to those of their native counterparts. The detailed analysis of the microstructure also represents a first step towards better understanding the physiology of the vessels and replicating these conditions in silico. STATEMENT OF SIGNIFICANCE: Tissue engineering provides a scaffold as substrate for in vitro cells seeding. Decellularization completely removes immunogenic cellular components, preserving the organ ultrastructure. Consequently, decellularized scaffolds provide a natural microenvironment for cell repopulation and facilitate functional recovery in vitro. We have comprehensively characterized the decellularized porcine vena cava by comparing its mechanical properties and microstructural characteristics with its native counterpart. Extension-inflation testing is considered a method to mimic stresses and stretches in vivo. Since no significant differences were found between native and decellularized tissue, these scaffolds show some potential. Moreover, this study was expanded to include microstructural characterization of collagen fibers using multi-photon microscopy, making it the first of its kind dedicated to biomechanical and microstructural evaluation of decellularized veins.
- MeSH
- biomechanika MeSH
- kolagen chemie MeSH
- prasata MeSH
- Sus scrofa MeSH
- tkáňové podpůrné struktury * chemie MeSH
- venae cavae * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
OBJECTIVES: Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. METHODS: We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. RESULTS: In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. CONCLUSIONS: We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging.
- MeSH
- bílá hmota * diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování patologie MeSH
- průřezové studie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.
- MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- difrakce rentgenového záření MeSH
- koroze MeSH
- mangan chemie toxicita MeSH
- myši MeSH
- pevnost v tahu MeSH
- pevnost v tlaku MeSH
- viabilita buněk účinky léků MeSH
- železo chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. METHODS: X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. RESULTS: The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. SIGNIFICANCE: Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake.
- MeSH
- difrakce rentgenového záření MeSH
- fosforečnany vápenaté MeSH
- kostní cementy MeSH
- maloúhlový rozptyl MeSH
- mikroskopie elektronová rastrovací MeSH
- pevnost v tlaku MeSH
- počítačová rentgenová tomografie * MeSH
- testování materiálů MeSH
- zinkfosfátový cement * MeSH
- zubní cementy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Zinc (Zn) alloys seem to be promising candidates for application in orthopaedic or cardiovascular medical implants. In this area, high standards are required regarding the biocompatibility as well as excellent mechanical and tailored degradation properties. In the presented study, a novel Zn-0.8Mg-0.2Sr (wt%) alloy has been fabricated by the combination of casting, homogenization annealing and extrusion at 200 °C. As a consequence of its fine-grained homogenous microstructure, the prepared material is characterized by an excellent combination of tensile yield strength, ultimate tensile strength and elongation corresponding to 244 MPa, 324 MPa and 20% respectively. The in vitro corrosion rates of the Zn-0.8Mg-0.2Sr alloy in the physiological solution and the simulated body fluid were 244 μm/a and 69.8 μm/a, respectively. Furthermore, an extract test revealed that Zn-0.8Mg-0.2Sr extracts diluted to 25% had no adverse effects towards L929 fibroblasts, TAg periosteal cells and Saos-2 osteoblasts. Moreover, the Zn-0.8Mg-0.2Sr surface showed effective inhibition of initial Streptococcus gordonii adhesion and biofilm formation. These results indicated the Zn-0.8Mg-0.2Sr alloy, which has superior mechanical properties, might be a promising candidate for materials used for load-bearing applications.
Cortical bone plays a vital role in determining overall bone strength. We investigate the structural, compositional, and nanomechanical properties of cortical bone following ovariectomy (OVX) of 12-week-old Sprague Dawley rats, since this animal model is frequently employed to evaluate the performance of implantable biomaterials in compromised bone healing conditions. Morphological parameters and material properties of bone in the geometrical center of the femoral cortex were investigated four and eight weeks post-OVX and in unoperated controls (Ctrl), using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, Raman spectroscopy, and nanoindentation. The OVX animals showed increase in body weight, diminished bone mineral density, increased intracortical porosity, but increased bone mass through periosteal apposition (e.g., increases in periosteal perimeter, cortical cross-sectional thickness, and cross-sectional area). However, osteocyte densities, osteocyte lacunar dimensions, and the nanomechanical behavior on the single mineralized collagen fibril level remained unaffected. Our correlative multiscale investigation provides structural, chemical, and nanomechanical evidence substantiating earlier reports suggesting that rats ovariectomized at 12 weeks undergo simultaneous bone loss and growth, resulting in the effects of OVX being less obvious. Periosteal apposition contradicts the conventional view of bone loss in osteoporosis but appears advantageous for the greater functional demand imposed on the skeleton by increased body weight and fragility induced by increased intracortical porosity. Through a variety of morphological changes, it is likely that 12-week-old rats are able to adapt to OVX-related microstructural and compositional alterations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 997-1007, 2018.
- MeSH
- biomechanika MeSH
- extracelulární matrix metabolismus MeSH
- femur patologie patofyziologie MeSH
- kortikální kost diagnostické zobrazování patologie patofyziologie MeSH
- lineární modely MeSH
- minerály metabolismus MeSH
- nanočástice chemie MeSH
- osteocyty metabolismus MeSH
- osteoporóza diagnostické zobrazování patologie patofyziologie MeSH
- počet buněk MeSH
- poréznost MeSH
- potkani Sprague-Dawley MeSH
- rentgenová mikrotomografie MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Several evidences demonstrated the role of white matter (WM) lesions in the pathogenesis of Vascular Parkinsonism (VP), a clinical entity characterized by parkinsonism, postural instability, marked gait difficulty and poor response to levodopa. However, the involvement of normal appearing white matter (NAWM) in VP still remains unknown. This study aimed to investigate the microstructural integrity of NAWM in VP compared to Parkinson's disease (PD) and controls using neuroimaging approach. METHODS: Magnetic resonance imaging data were acquired from 50 participants (15 VP, 20 PD and 15 controls). Diffusion tensor imaging (DTI) and Tract-based spatial statistics (TBSS) were performed to assess microstructural NAWM changes. In order to evaluate the relationship between specific fiber tract involvement and clinical picture, diffusion alterations were correlated with clinical features. RESULTS: Compared to PD patients and controls, significantly reduced fractional anisotropy (FA) and increased mean diffusivity (MD) and radial diffusivity (RD) in NAWM of corpus callosum, internal and external capsule, and corona radiata were present in VP. By contrast, DTI metrics were normal in NAWM-PD and controls. A significant correlation was found between FA and MD of anterior third of corpus callosum and clinical variables (postural instability, freezing-of-gait and symmetry of parkinsonism). CONCLUSIONS: This study improves the knowledge on WM pathology in VP, as our results demonstrate that NAWM damage occurs in VP, but not in PD nor in controls. NAWM damage might relate to clinical picture and suggest that non-clearly-visible WM alterations may contribute to the physiopathology of this vascular disease.
- MeSH
- bílá hmota diagnostické zobrazování patologie MeSH
- cerebrovaskulární poruchy diagnostické zobrazování patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- parkinsonské poruchy diagnostické zobrazování patologie MeSH
- senioři MeSH
- zobrazování difuzních tenzorů metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Schizophrenia has recently been associated with widespread white matter microstructural abnormalities, but the functional effects of these abnormalities remain unclear. Widespread heterogeneity of results from studies published to date preclude any definitive characterization of the relationship between white matter and cognitive performance in schizophrenia. Given the relevance of deficits in cognitive function to predicting social and functional outcomes in schizophrenia, the authors carried out a meta-analysis of available data through the ENIGMA Consortium, using a common analysis pipeline, to elucidate the relationship between white matter microstructure and a measure of general cognitive performance, IQ, in patients with schizophrenia and healthy participants. METHODS: The meta-analysis included 760 patients with schizophrenia and 957 healthy participants from 11 participating ENIGMA Consortium sites. For each site, principal component analysis was used to calculate both a global fractional anisotropy component (gFA) and a fractional anisotropy component for six long association tracts (LA-gFA) previously associated with cognition. RESULTS: Meta-analyses of regression results indicated that gFA accounted for a significant amount of variation in cognition in the full sample (effect size [Hedges' g]=0.27, CI=0.17-0.36), with similar effects sizes observed for both the patient (effect size=0.20, CI=0.05-0.35) and healthy participant groups (effect size=0.32, CI=0.18-0.45). Comparable patterns of association were also observed between LA-gFA and cognition for the full sample (effect size=0.28, CI=0.18-0.37), the patient group (effect size=0.23, CI=0.09-0.38), and the healthy participant group (effect size=0.31, CI=0.18-0.44). CONCLUSIONS: This study provides robust evidence that cognitive ability is associated with global structural connectivity, with higher fractional anisotropy associated with higher IQ. This association was independent of diagnosis; while schizophrenia patients tended to have lower fractional anisotropy and lower IQ than healthy participants, the comparable size of effect in each group suggested a more general, rather than disease-specific, pattern of association.
- MeSH
- analýza hlavních komponent MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování MeSH
- dospělí MeSH
- faktorová analýza statistická MeSH
- inteligence * MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek diagnostické zobrazování MeSH
- nervové dráhy diagnostické zobrazování MeSH
- schizofrenie (psychologie) * MeSH
- schizofrenie diagnostické zobrazování patofyziologie MeSH
- studie případů a kontrol MeSH
- Wechslerovy škály MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Streptococcus mutans is one of the bacteria that initiates the colonization of the pellicle at the tooth surface. It forms a plaque, together with other bacteria, which gradually dissolves the pellicle and leaves the tooth surface unprotected against the acidic oral environment. Calcium phosphate ceramics are excellent synthetic materials for the study of biofilm formation in dentistry because they are comparable to teeth in chemical composition and structure. Calcium phosphates can be processed to achieve a variety of crystalline compounds with biologically relevant ionic substitutions and structures that allow study of the effect of the surface chemistry and the topography independently. In this article, we describe the preparation and characterization of three types of calcium phosphate-based materials as a suitable surface for the formation of the S. mutans biofilm: beta-tricalcium phosphate (β-TCP); sintered hydroxyapatite (SHA); and calcium-deficient hydroxyapatite (CDHA). The densest biofilms were formed on the surfaces of SHA and CDHA, with no significant differences due to the stoichiometry or microstructure. In contrast, β-TCP showed a lower susceptibility to S. mutans biofilm formation, suggesting that the crystalline structure is the controlling parameter. Subsequently, SHA was selected to develop a dental biofilm model that allowed study of S. mutans biofilm susceptibility to chlorhexidine and ethanol.