Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
- MeSH
- Electroencephalography MeSH
- Cognition * physiology MeSH
- Humans MeSH
- Brain physiology MeSH
- Brain Waves physiology MeSH
- Memory physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.
- MeSH
- Action Potentials physiology MeSH
- Astrocytes * metabolism MeSH
- Potassium * metabolism MeSH
- KCNQ Potassium Channels * metabolism genetics MeSH
- Hippocampus * metabolism MeSH
- Connexins metabolism genetics MeSH
- Gap Junctions * metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Nerve Net metabolism MeSH
- Neurons metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Despite the substantial knowledge accumulated by past research, the exact mechanisms of the pathogenesis of schizophrenia and causal treatments still remain unclear. Deficits of cognition and information processing in schizophrenia are today often viewed as the primary and core symptoms of this devastating disorder. These deficits likely result from disruptions in the coordination of neuronal and neural activity. The aim of this review is to bring together convergent evidence of discoordinated brain circuits in schizophrenia at multiple levels of resolution, ranging from principal cells and interneurons, neuronal ensembles and local circuits, to large-scale brain networks. We show how these aberrations could underlie deficits in cognitive control and other higher order cognitive-behavioural functions. Converging evidence from both animal models and patients with schizophrenia is presented in an effort to gain insight into common features of deficits in the brain information processing in this disorder, marked by disruption of several neurotransmitter and signalling systems and severe behavioural outcomes.
- MeSH
- Humans MeSH
- Brain physiopathology MeSH
- Nerve Net physiopathology MeSH
- Neural Pathways physiopathology MeSH
- Neurons physiology MeSH
- Schizophrenia physiopathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The discoordination hypothesis of schizophrenia posits discoordination of neural activity as the central mechanism that underlies some psychotic symptoms (including 'hallmark' cognitive symptoms) of schizophrenia. To test this proposition, we studied the activity of hippocampal neurons in urethane anesthetized Long Evans rats after 0.15mg/kg dizocilpine (MK-801), an N-Methyl-d-aspartate (NMDA) glutamate receptor antagonist, which can cause psychotic symptoms in humans and cognitive control impairments in animals. We observed that MK-801 altered the temporal coordination, but not rate, of neuronal firing. Coactivation between neurons increased, driven primarily by increased coincident firing of cell pairs that did not originally fire together before MK-801 injection. Increased pairwise coactivation manifested as disorganized discharge on the level of neuronal ensembles, which in turn could lead to disorganization in information processing. Disorganization of neuronal activity after a psychotomimetic dose of MK-801 supports the discoordination hypothesis of psychosis.
- MeSH
- Action Potentials drug effects physiology MeSH
- Dizocilpine Maleate pharmacology MeSH
- Hippocampus drug effects physiopathology MeSH
- Microelectrodes MeSH
- Neurons drug effects physiology MeSH
- Rats, Long-Evans MeSH
- Psychotropic Drugs pharmacology MeSH
- Theta Rhythm drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The value of Shannon's mutual information is commonly used to describe the total amount of information that the neural code transfers between the ensemble of stimuli and the ensemble of neural responses. In addition, it is often desirable to know which features of the stimulus or response are most informative. The literature offers several different decompositions of the mutual information into its stimulus or response-specific components, such as the specific surprise or the uncertainty reduction, but the number of mutually distinct measures is in fact infinite. We resolve this ambiguity by requiring the specific information measures to be invariant under invertible coordinate transformations of the stimulus and the response ensembles. We prove that the Kullback-Leibler divergence is then the only suitable measure of the specific information. On a more general level, we discuss the necessity and the fundamental aspects of the coordinate invariance as a selection principle. We believe that our results will encourage further research into invariant statistical methods for the analysis of neural coding.
- MeSH
- Biophysics MeSH
- Physical Endurance MeSH
- Information Theory * MeSH
- Humans MeSH
- Models, Neurological * MeSH
- Neurons physiology MeSH
- Probability MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The hippocampus and retrosplenial cortex are integrated within a higher-order cognitive circuit supporting relational (spatial, contextual, episodic) forms of learning and memory. Hippocampal place cells can coordinate multiple parallel representations in the same physical environment. Novel environment exploration triggers expression of immediate-early genes (IEGs) Arc and Homer1a in spatial context-specific ensembles of CA1 and CA3 neurons. Less is know about ensemble coding in the retrosplenial cortex (RSC), a region directly connected and functionally coupled to CA1. Hippocampal and retrosplenial damage is found in patients with schizophrenia alongside cognitive deficits affecting relational memory. Systemic administration of non-competitive NMDAR antagonists such as MK-801 is used to model psychosis in animals and humans. Acute systemic MK-801 (0.15 mg/kg) impaired cognitive control in rats and ensemble code for spatial context in CA1. Here, we use expression of immediate-early genes Arc and Homer 1a to examine ensemble coding in rat CA3 and RSC to test if the effect of MK-801 extends upstream and downstream of CA1, respectively. Different rats explored the same context twice (A/A), explored two distinct contexts (A/B) or remained in their home cage (CC). In contrast to CA1, MK-801 did not affect ensemble coding in CA3. Unlike CA3 and CA1, similarity of RSC ensembles active during exploration did not reflect change in spatial context, but MK-801 (0.15 mg/kg) increased similarity in RSC ensembles active during spontaneous behavior in the home cage. The data provide support for MK-801-induced functional uncoupling between CA3 and CA1 and suggest that ensemble coding deficit may extend downstream of CA1. This deficit may reflect hyperassociative state in the cognitive circuit underlying cognitive disorganization in psychosis. © 2016 Wiley Periodicals, Inc.
- MeSH
- Excitatory Amino Acid Antagonists pharmacology MeSH
- Housing, Animal MeSH
- Cytoskeletal Proteins metabolism MeSH
- Dizocilpine Maleate pharmacology MeSH
- Gene Expression drug effects MeSH
- CA1 Region, Hippocampal drug effects metabolism MeSH
- CA3 Region, Hippocampal drug effects metabolism MeSH
- Homer Scaffolding Proteins metabolism MeSH
- Cognition drug effects physiology MeSH
- Cerebral Cortex drug effects metabolism MeSH
- Neural Pathways drug effects metabolism MeSH
- Exploratory Behavior drug effects physiology MeSH
- Rats, Long-Evans MeSH
- Nerve Tissue Proteins metabolism MeSH
- Space Perception drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
We used the psychotomimetic phencyclidine (PCP) to investigate the relationships among cognitive behavior, coordinated neural network function, and information processing within the hippocampus place cell system. We report in rats that PCP (5 mg/kg, i.p.) impairs a well learned, hippocampus-dependent place avoidance behavior in rats that requires cognitive control even when PCP is injected directly into dorsal hippocampus. PCP increases 60-100 Hz medium-freguency gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration. PCP discoordinates theta-modulated medium-frequency and slow gamma oscillations in CA1 LFPs such that medium-frequency gamma oscillations become more theta-organized than slow gamma oscillations. CA1 place cell firing fields are preserved under PCP, but the drug discoordinates the subsecond temporal organization of discharge among place cells. This discoordination causes place cell ensemble representations of a familiar space to cease resembling pre-PCP representations despite preserved place fields. These findings point to the cognitive impairments caused by PCP arising from neural discoordination. PCP disrupts the timing of discharge with respect to the subsecond timescales of theta and gamma oscillations in the LFP. Because these oscillations arise from local inhibitory synaptic activity, these findings point to excitation-inhibition discoordination as the root of PCP-induced cognitive impairment.SIGNIFICANCE STATEMENT Hippocampal neural discharge is temporally coordinated on timescales of theta and gamma oscillations in the LFP and the discharge of a subset of pyramidal neurons called "place cells" is spatially organized such that discharge is restricted to locations called a cell's "place field." Because this temporal coordination and spatial discharge organization is thought to represent spatial knowledge, we used the psychotomimetic phencyclidine (PCP) to disrupt cognitive behavior and assess the importance of neural coordination and place fields for spatial cognition. PCP impaired the judicious use of spatial information and discoordinated hippocampal discharge without disrupting firing fields. These findings dissociate place fields from spatial cognitive behavior and suggest that hippocampus discharge coordination is crucial to spatial cognition.
- MeSH
- Phencyclidine administration & dosage toxicity MeSH
- Hallucinogens administration & dosage toxicity MeSH
- CA1 Region, Hippocampal drug effects physiopathology MeSH
- Injections, Intraventricular MeSH
- Rats MeSH
- Locomotion drug effects physiology MeSH
- Nerve Net drug effects physiopathology MeSH
- Rats, Long-Evans MeSH
- Spatial Behavior drug effects physiology MeSH
- Avoidance Learning drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The processes that organize different thoughts and memories, allowing the separation of currently relevant and irrelevant information, are collectively known as cognitive control. The neuronal mechanisms of these processes can be investigated by place cell ensemble recordings during behaviors and environmental manipulations that present cognitive control challenges to selectively represent one of multiple possible alternative estimates of location. We review place cell studies that investigate responses to manipulations that dissociate the environment into two or more spatial frames of locations, often times to test notions of pattern separation. Manipulations, such as continuously rotating the recording chamber reveal that the ensemble discharge in hippocampus self-organizes into multiple, transiently-organized representations of space, each defined by the subset of coactive cells. Ensemble discharge in the hippocampus alternates between separate representations of frame-specific positions on timescales from 25 ms to several seconds. The dynamic, functional grouping of discharge into transiently co-active subsets of cells is predicted by the animal's changing behavioral needs. In addition to identifying neural correlates of cognitive control in hippocampus, these observations demonstrate that the separation of neuronal activity into distinctive representations depends on ongoing cognitive demands and that what can appear as noise, deviations from receptive field tuning, can substantially be the result of these internal knowledge-guided fluctuations. These findings inspire a new perspective that should be taken into account when investigating pattern separation--a perspective that emphasizes changes in hippocampal neural discharge that are happening on a short timescale and does not assume that patterns of neural discharge are steady and stationary across the several minutes of the recordings.
- MeSH
- Place Cells physiology MeSH
- Hippocampus physiology MeSH
- Rats MeSH
- Humans MeSH
- Models, Neurological * MeSH
- Spatial Memory physiology MeSH
- Spatial Learning physiology MeSH
- Space Perception physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The contribution of hippocampal circuits to high-capacity episodic memory is often attributed to the large number of orthogonal activity patterns that may be stored in these networks. Evidence for high-capacity storage in the hippocampus is missing, however. When animals are tested in pairs of environments, different combinations of place cells are recruited, consistent with the notion of independent representations. However, the extent to which representations remain independent across larger numbers of environments has not been determined. To investigate whether spatial firing patterns recur when animals are exposed to multiple environments, we tested rats in 11 recording boxes, each in a different room, allowing for 55 comparisons of place maps in each animal. In each environment, activity was recorded from neuronal ensembles in hippocampal area CA3, with an average of 30 active cells per animal. Representations were highly correlated between repeated tests in the same room but remained orthogonal across all combinations of different rooms, with minimal overlap in the active cell samples from each environment. A low proportion of cells had activity in many rooms but the firing locations of these cells were completely uncorrelated. Taken together, the results suggest that the number of independent spatial representations stored in hippocampal area CA3 is large, with minimal recurrence of spatial firing patterns across environments.
- MeSH
- Behavior, Animal physiology MeSH
- CA3 Region, Hippocampal physiology MeSH
- Rats MeSH
- Brain Mapping * MeSH
- Nerve Net physiology MeSH
- Rats, Long-Evans MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Flexible behavior in dynamic, real-world environments requires more than static spatial learning and memory. Discordant and unstable cues must be organized in coherent subsets to give rise to meaningful spatial representations. We model this form of cognitive coordination on a rotating arena - Carousel where arena- and room-bound spatial cues are dissociated. Hippocampal neuronal ensemble activity can repeatedly switch between multiple representations of such an environment. Injection of tetrodotoxin into one hippocampus prevents cognitive coordination during avoidance of a stationary room-defined place on the Carousel and increases coactivity of previously unrelated neurons in the uninjected hippocampus. Place avoidance on the Carousel is impaired after systemic administration of non-competitive NMDAr blockers (MK-801) used to model schizophrenia in animals and people. We tested if this effect is due to cognitive disorganization or other effect of NMDAr antagonism such as hyperlocomotion, spatial memory impairment, or general learning deficit. We also examined if the same dose of MK-801 alters patterns of immediate-early gene (IEG) expression in the hippocampus. IEG expression is triggered in neuronal nuclei in a context-specific manner after behavioral exploration and it is used to map activity in neuronal populations. IEG expression is critical for maintenance of synaptic plasticity and memory consolidation. We show that the same dose of MK-801 that impairs spatial coordination of rats on the Carousel also eliminates contextual specificity of IEG expression in hippocampal CA1 ensembles. This effect is due to increased similarity between ensembles activated in different environments, consistent with the idea that it is caused by increased coactivity between neurons, which did not previously fire together. Our data support the proposition of the Hypersynchrony theory that cognitive disorganization in psychosis is due to increased coactivity between unrelated neurons.
- Publication type
- Journal Article MeSH