Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
- MeSH
- DNA * chemistry genetics MeSH
- G-Quadruplexes MeSH
- Genome, Human MeSH
- Genome * MeSH
- Hominidae * genetics MeSH
- Humans MeSH
- Nucleotide Motifs MeSH
- Pan troglodytes genetics MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Telomere * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
... NON-ENZYMATIC GLYCATION -- AND CARBONYL STRESS (Marta Kalousova) 69 -- 1 Basic characteristics of AGEs ... ... extracellular matrix 111 -- 10 Atherosclerotic plaque destabilization 111 -- 11 Atheroprotective functions ... ... 191 -- 2.5 Prion-like aggregates associated with physiological functions 192 -- X. ... ... Glycations 198 -- 2.3 Mitochondrial dysfunction 201 -- 2.4 Alteration of nuclear DNA 203 -- 2.5 Telomeres ...
Učební texty Univerzity Karlovy
First edition 241 stran : ilustrace ; 23 cm
- Conspectus
- Patologie. Klinická medicína
- Učební osnovy. Vyučovací předměty. Učebnice
- NML Fields
- biochemie
- patologie
- NML Publication type
- učebnice vysokých škol
Armadillo repeat-containing proteins (ARMCs) are a large family found throughout eukaryotes, which play prominent roles in cell adhesion, signaling and cytoskeletal regulation. The ARMC6 protein is highly conserved in primates, including humans, but to date does not have a clear function beyond initial hints of a link to cancer and telomerase activity. We report here in vitro experiments showing ARMC6 binding to DNA promoter sequences from several cancer-related genes (e.g., EGFR, VEGF and c-MYC), and also to the telomeric RNA repeat (TERRA). ARMC6 binding activity appears to recognize G-quadruplex motifs, which are being increasingly implicated as structure-based protein binding sites in chromosome maintenance and repair. In vivo investigation of ARMC6 function revealed that when this protein is overexpressed in human cell lines, there is different expression of genes connected with oncogenic pathways and those implicated in downstream non-canonical telomerase pathways (e.g., VEGF, hTERT, c-MYC, ESM1, MMP3). ARMC6 is already known to interact with human shelterin protein TRF2 and telomerase. The protein binds G-quadruplex structures and does so preferentially to RNA over DNA. As such, this protein may be an example of how a non-canonical nucleic acid structural motif allows mediation between gene regulation and telomeric chromatin rearrangement pathways.
- MeSH
- DNA-Binding Proteins MeSH
- G-Quadruplexes * MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Neoplasms genetics metabolism MeSH
- Promoter Regions, Genetic * MeSH
- Armadillo Domain Proteins * metabolism genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- RNA metabolism genetics MeSH
- Telomerase metabolism genetics MeSH
- Telomere * metabolism MeSH
- Transcription Factors MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.
- MeSH
- DNA metabolism MeSH
- G-Quadruplexes * MeSH
- Heterochromatin MeSH
- Telomere * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
- MeSH
- Humans MeSH
- Cell Communication MeSH
- Neoplasms * MeSH
- Cellular Senescence genetics MeSH
- Aging * metabolism MeSH
- Telomere Shortening MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Taking advantage of evolving and improving sequencing methods, human chromosome 8 is now available as a gapless, end-to-end assembly. Thanks to advances in long-read sequencing technologies, its centromere, telomeres, duplicated gene families and repeat-rich regions are now fully sequenced. We were interested to assess if the new assembly altered our understanding of the potential impact of non-B DNA structures within this completed chromosome sequence. It has been shown that non-B secondary structures, such as G-quadruplexes, hairpins and cruciforms, have important regulatory functions and potential as targeted therapeutics. Therefore, we analysed the presence of putative G-quadruplex forming sequences and inverted repeats in the current human reference genome (GRCh38) and in the new end-to-end assembly of chromosome 8. The comparison revealed that the new assembly contains significantly more inverted repeats and G-quadruplex forming sequences compared to the current reference sequence. This observation can be explained by improved accuracy of the new sequencing methods, particularly in regions that contain extensive repeats of bases, as is preferred by many non-B DNA structures. These results show a significant underestimation of the prevalence of non-B DNA secondary structure in previous assembly versions of the human genome and point to their importance being not fully appreciated. We anticipate that similar observations will occur as the improved sequencing technologies fill in gaps across the genomes of humans and other organisms.
- MeSH
- G-Quadruplexes * MeSH
- Genome, Human MeSH
- Sequence Inversion * MeSH
- Humans MeSH
- Chromosomes, Human, Pair 8 * MeSH
- Sequence Analysis, DNA MeSH
- Telomere * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- MeSH
- DNA MeSH
- Humans MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- DNA, Satellite * MeSH
- Base Sequence MeSH
- Telomere * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
- MeSH
- B-Lymphocytes * immunology MeSH
- Antigens, CD immunology MeSH
- Genomics MeSH
- Genes, Immunoglobulin * MeSH
- Leukocyte Immunoglobulin-like Receptor B1 immunology MeSH
- Mutagenesis, Insertional MeSH
- Immunoglobulin Light Chains genetics MeSH
- Humans MeSH
- Plasmodium falciparum MeSH
- Antibodies, Protozoan genetics MeSH
- Receptors, Antigen, T-Cell genetics MeSH
- Receptors, Immunologic immunology MeSH
- Antibody Diversity * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
- Publication type
- Journal Article MeSH
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
- MeSH
- Biological Evolution * MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Eukaryota classification genetics metabolism MeSH
- Phylogeny MeSH
- Humans MeSH
- RNA physiology MeSH
- Telomerase chemistry physiology MeSH
- Telomere metabolism MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH