receptor editing
Dotaz
Zobrazit nápovědu
Male infertility is a multifactorial condition contributing to approximately 50% of all cases of couple infertility. In recent years, significant advances have been made in both diagnostics and treatment. This review summarizes key developments from 2019 to 2024 with direct relevance to routine clinical practice in Czech urology and andrology. Particular attention is paid to the updated semen analysis standards (World Health Organisation 6th edition, 2021), sperm DNA fragmentation testing, genetic evaluation (karyotyping, Y chromosome microdeletions, and exome sequencing), surgical management of varicocele, and sperm retrieval techniques for azoospermia, including microdissection testicular sperm extraction (micro-TESE). The article also discusses pharmacological options (gonadotropins, selective estrogen receptor modulators, antioxidants), the impact of lifestyle factors, and the importance of interdisciplinary collaboration with assisted reproduction centers. Future perspectives, including the role of preventive strategies in male reproductive health, are also addressed. The aim is to provide a comprehensive and clinically applicable overview of current recommendations and therapeutic approaches in andrology, with a focus on their implementation in the Czech urological setting.
- MeSH
- analýza spermatu metody MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- asistovaná reprodukce MeSH
- genetické testování metody MeSH
- gonadotropiny terapeutické užití MeSH
- lidé MeSH
- mužská infertilita * diagnóza etiologie terapie MeSH
- odběr spermií MeSH
- selektivní modulátory estrogenních receptorů farmakologie terapeutické užití MeSH
- varikokéla chirurgie MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- systematický přehled MeSH
BACKGROUND: Through the agnostic screening of patients with uncharacterised disease phenotypes for an upregulation of type I interferon (IFN) signalling, we identified a cohort of individuals heterozygous for mutations in PTPN1, encoding the protein-tyrosine phosphatase 1B (PTP1B). We aimed to describe the clinical phenotype and molecular and cellular pathology of this new disease. METHODS: In this case series, we identified patients and collected clinical and neuroradiological data through collaboration with paediatric neurology and clinical genetics colleagues across Europe (Czechia, France, Germany, Italy, Slovenia, and the UK) and Israel. Variants in PTPN1 were identified by exome and directed Sanger sequencing. The expression of IFN-stimulated genes was determined by quantitative (q) PCR or NanoString technology. Experiments to assess RNA and protein expression and to investigate type 1 IFN signalling were undertaken in patient fibroblasts, hTERT-immortalised BJ-5ta fibroblasts, and RPE-1 cells using CRISPR-Cas9 editing and standard cell biology techniques. FINDINGS: Between Dec 20, 2013, and Jan 11, 2023, we identified 12 patients from 11 families who were heterozygous for mutations in PTPN1. We found ten novel or very rare variants in PTPN1 (frequency on gnomAD version 4.1.0 of <1·25 × 10:sup>-6). Six variants were predicted as STOP mutations, two involved canonical splice-site nucleotides, and two were missense substitutions. In three patients, the variant occurred de novo, whereas in nine affected individuals, the variant was inherited from an asymptomatic parent. The clinical phenotype was characterised by the subacute onset (age range 1-8 years) of loss of motor and language skills in the absence of seizures after initially normal development, leading to spastic dystonia and bulbar involvement. Neuroimaging variably demonstrated cerebral atrophy (sometimes unilateral initially) or high T2 white matter signal. Neopterin in CSF was elevated in all ten patients who were tested, and all probands demonstrated an upregulation of IFN-stimulated genes in whole blood. Although clinical stabilisation and neuroradiological improvement was seen in both treated and untreated patients, in six of eight treated patients, high-dose corticosteroids were judged clinically to result in an improvement in neurological status. Of the four asymptomatic parents tested, IFN signalling in blood was normal (three patients) or minimally elevated (one patient). Analysis of patient blood and fibroblasts showed that tested PTPN1 variants led to reduced levels of PTPN1 mRNA and PTP1B protein, and in-vitro assays demonstrated that loss of PTP1B function was associated with impaired negative regulation of type 1 IFN signalling. INTERPRETATION: PTPN1 haploinsufficiency causes a type 1 IFN-driven autoinflammatory encephalopathy. Notably, some patients demonstrated stabilisation, and even recovery, of neurological function in the absence of treatment, whereas in others, the disease appeared to be responsive to immune suppression. Prospective studies are needed to investigate the safety and efficacy of specific immune suppression approaches in this disease population. FUNDING: The UK Medical Research Council, the European Research Council, and the Agence Nationale de la Recherche.
- MeSH
- dítě MeSH
- haploinsuficience * genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mutace genetika MeSH
- nemoci mozku genetika MeSH
- neurozánětlivé nemoci genetika MeSH
- předškolní dítě MeSH
- tyrosinfosfatasa nereceptorového typu 1 * genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury. The phenotypes of A20Δpodocyte (podocyte-specific knockout of A20) mice were compared with those of control mice at 6 months of age to identify spontaneous changes in kidney function. A20Δpodocyte mice presented elevated serum urea nitrogen and creatinine levels, along with increased accumulation of inflammatory cells-neutrophils and macrophages-within the glomeruli. Additionally, A20Δpodocyte mice displayed significant podocyte loss. Ultrastructural analysis of A20 podocyte-knockout mouse glomeruli revealed hypocellularity of the glomerular tuft, expansion of the extracellular matrix, podocytopenia associated with foot process effacement, karyopyknosis, micronuclei, and podocyte detachment. In addition to podocyte death, we also observed damage to intracapillary endothelial cells with vacuolation of the cytoplasm and condensation of nuclear chromatin. A20 expression downregulation and CRISPR-Cas9 genome editing targeting A20 in a podocyte cell line confirmed these findings in vitro, highlighting the significant contribution of A20 activity in podocytes to glomerular injury pathogenesis. Finally, we analyzed TNFAIP3 transcription levels alongside genes involved in apoptosis, anoikis, NF-κB regulation, and cell attachment in glomerular and tubular compartments of kidney biopsies of patients with various renal diseases.
- MeSH
- cytoskelet * metabolismus MeSH
- glomerulonefritida * patologie metabolismus genetika MeSH
- glomerulus patologie metabolismus MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- podocyty * metabolismus patologie MeSH
- signální transdukce MeSH
- TNFAIP3 * metabolismus genetika MeSH
- zánět * patologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pulmonary arterial hypertension (PAH) is a severe and progressive disease with limited survival prospects under currently available therapies. Since the 2022 edition of the European Society of Cardiology and European Respiratory Society guidelines on pulmonary hypertension, substantial clinical evidence has emerged, supporting a new treatment algorithm for PAH as presented at the 7th World Symposium on Pulmonary Hypertension 2024 and the following proceeding papers. Key updates include the introduction of sotatercept as a second-line therapy leading to a revised definition of maximal medical therapy now encompassing agents from four therapeutic groups (phosphodiesterase-5 inhibitors/soluble guanylate cyclase stimulators, endothelin receptor antagonists, prostacyclin pathway agents, and sotatercept), instead of three (phosphodiesterase-5 inhibitors/soluble guanylate cyclase stimulators, endothelin receptor antagonists, prostacyclin pathway agents). Other novelties include the elimination of a distinct pathway for patients with cardiopulmonary comorbidities in favor of an individualized approach, a reduction in the initial patient assessment risk categories from three to two, and a follow-up interval shortened from 3-6 months to 3-4 months post-treatment initiation. This review presents these advancements and emphasizes the need for their widespread implementation in clinical practice. At the end, we present new opportunities and challenges in the treatment of pulmonary arterial hypertension in eight Central and Eastern European countries.
BACKGROUND: Megalin (LRP2 receptor) mediates the endocytosis of radiolabeled peptides into proximal tubular kidney cells, which may cause nephrotoxicity due to the accumulation of a radioactive tracer. The study aimed to develop a cellular model of human kidney HK2 cells with LRP2 knockout (KO) using CRISPR/Cas9 technique. This model was employed for the determination of the megalin-mediated accumulation of 68Ga- and 99mTc-labeled 15-mer peptide developed to target the vascular endothelial growth factor (VEGF) receptor in oncology radiodiagnostics. RESULTS: The gene editing in the LRP2 KO model was verified by testing two well-known megalin ligands when higher viability of KO cells was observed after gentamicin treatment at cytotoxic concentrations and lower FITC-albumin internalization by the KO cells was detected in accumulation studies. Fluorescent-activated cell sorting was used to separate genetically modified LRP2 KO cell subpopulations. Moreover, flow cytometry with a specific antibody against megalin confirmed LRP2 knockout. The verified KO model identified both 68Ga- and 99mTc-radiolabeled 15-mer peptides as megalin ligands in accumulation studies. We found that both radiolabeled 15-mers enter LRP2 KO HK2 cells to a lesser extent compared to parent cells. Differences in megalin-mediated cellular uptake depending on the radiolabeling were not observed. Using biomolecular docking, the interaction site of the 15-mer with megalin was also described. CONCLUSION: The CRISPR/Cas9 knockout of LRP2 in human kidney HK2 cells is an effective approach for the determination of radiopeptide internalization mediated by megalin. This in vitro method provided direct molecular evidence for the cellular uptake of radiolabeled anti-VEGFR 15-mer peptides via megalin.
- Publikační typ
- časopisecké články MeSH
... immunity -- 7.1.4 Specific (adaptive) immunity -- 7.2 Genetics of immunoglobulins and antigenic receptors ... ... -- 7.2.1 Immunoglobulins -- 7.2.2 B cell receptors (BCR) -- 7.2.3 T cell receptors (TCR) -- 7.3 Genetics ... ... next-generation sequencing 143 -- 9.5 Genetic engineering 144 -- 9.5.1 DNA cloning 144 -- 9.5.2 Genome editing ... ... Safety of viral gene therapy 163 -- 10.4 Gene silencing using oligonucleotide therapy 164 -- 10.5 Gene editing ...
First edition 227 stran : ilustrace ; 30 cm
- Konspekt
- Lékařské vědy. Lékařství
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- biologie
- NLK Publikační typ
- učebnice vysokých škol
Adar2-/- mice are a widely used model for studying the physiological consequences of reduced RNA editing. These mice are viable only when the Q/R editing site of the Gria2 subunit of the AMPA receptor is constitutively mutated to the codon for arginine, and Gria2R/R mice often serve as the sole control for Adar2-/- mice. Our study aimed to investigate whether ADAR2 inactivity and the Gria2R/R phenotype affect the rhythmicity of the circadian clock gene pattern and the expression of Gria1 and Gria2 subunits in the suprachiasmatic nucleus (SCN), hippocampus, parietal cortex and liver. Our data show that Gria2R/R mice completely lost circadian rhythmicity in the hippocampus compared to Adar2-/- mice. Compared to C57BL/6J mice, the expression profiles in the hippocampus and parietal cortex of Gria2R/R mice differ to the same extent as in Adar2-/-. No alterations were detected in the circadian profiles in the livers. These data suggest that the natural gradual postnatal increase in the editing of the Q/R site of the Gria2 subunit may be important for the development of circadian clockwork in some brain structures, and the use of Gria2R/R mice as the only control to Adar2-/- mice in the experiments dependent on the hippocampus and parietal cortex should therefore be considered.
- MeSH
- adenosindeaminasa genetika metabolismus MeSH
- cirkadiánní rytmus * MeSH
- exprese genu MeSH
- hipokampus metabolismus MeSH
- mozek * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nucleus suprachiasmaticus metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... human lineages.94 -- Generating protein diversity by gene duplication: the example of olfactory receptor ... ... factor binding and specificity -- Genetic regulation during RNA processing: RNA splicing and RNA editing ... ... therapeutics 344 -- RNA interference therapy 347 -- Future therapeutic prospects using -- CRISPR-Cas gene editing ...
2nd ed. 534 s. : il.
"Genetics and Genomics in Medicine is a new textbook written for undergraduate and graduate students, as well as medical researchers, which explains the science behind the uses of genetics and genomics in medicine today. It is not just about rare inherited and chromosomal disorders, but how genetics affects the whole spectrum of human health and disease. DNA technologies are explained, with emphasis on the modern techniques that have revolutionized the use of genetic information in medicine and are indicating the role of genetics in common complex diseases. The detailed, integrative coverage of genetic approaches to treatment and prevention includes pharmacogenomics and the prospects for personalized medicine. Cancers are essentially genetic diseases and are given a dedicated chapter that includes new insights from cancer genome sequencing. Clinical disorders are covered throughout and there are extensive end-of-chapter questions and problems"--Provided by publisher.
... nuclear RNA 106 -- 1J Post-transcriptional modifications of pre-rRNA and pre-tRNA 110 -- 7.8 RNA editing ... ... Slabý) 171 -- 12.1 General principles of cell signaling 171 -- 12.2 Intracellular receptors 174 -- 12.3 ... ... Membrane receptors 175 -- 12.3.1 Ion channel coupled receptors 176 -- 12.3.2 G-protein coupled receptors ... ... 178 -- 12.3.3 Receptors with enzymatic activity 181 -- 12.3.4 Mutual interactions of signaling pathways ...
1st edition 268 stran : ilustrace ; 30 cm
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- biologie
- NLK Publikační typ
- učebnice vysokých škol
Common variable immune deficiency (CVID) is a heterogeneous disorder characterized by recurrent infections, low levels of serum immunoglobulins, and impaired vaccine responses. Autoimmune manifestations are common, but B cell central and peripheral selection mechanisms in CVID are incompletely understood. Here, we find that receptor editing, a measure of central tolerance, is increased in transitional B cells from CVID patients and that these cells have a higher immunoglobulin κ:λ ratio in CVID patients with autoimmune manifestations than in those with infection only. Contrariwise, the selection pressure in the germinal center on CD27bright memory B cells is decreased in CVID patients with autoimmune manifestations. Finally, functionally, T cell-dependent activation showed that naive B cells in CVID patients are badly equipped for activation and induction of mismatch repair genes. We conclude that central tolerance is functional whereas peripheral selection is defective in CVID patients with autoimmune manifestations, which could underpin the development of autoimmunity.