temperature distribution modelling
Dotaz
Zobrazit nápovědu
OBJECTIVES: While COVID-19 continues to challenge the world, meteorological variables are thought to impact COVID-19 transmission. Previous studies showed evidence of negative associations between high temperature and absolute humidity on COVID-19 transmission. Our research aims to fill the knowledge gap on the modifying effect of vaccination rates and strains on the weather-COVID-19 association. METHODS: Our study included COVID-19 data from 439 cities in 22 countries spanning 3 February 2020 - 31 August 2022 and meteorological variables (temperature, relative humidity, absolute humidity, solar radiation, and precipitation). We used a two-stage time-series design to assess the association between meteorological factors and COVID-19 incidence. For the exposure modeling, we used distributed lag nonlinear models with a lag of up to 14 days. Finally, we pooled the estimates using a random effect meta-analytic model and tested vaccination rates and dominant strains as possible effect modifiers. RESULTS: Our results showed an association between temperature and absolute humidity on COVID-19 transmission. At 5 °C, the relative risk of COVID-19 incidence is 1.22-fold higher compared to a reference level at 17 °C. Correlated with temperature, we observed an inverse association for absolute humidity. We observed a tendency of increased risk on days without precipitation, but no association for relative humidity and solar radiation. No interaction between vaccination rates or strains on the weather-COVID-19 association was observed. CONCLUSIONS: This study strengthens previous evidence of a relationship of temperature and absolute humidity with COVID-19 incidence. Furthermore, no evidence was found that vaccinations and strains significantly modify the relationship between environmental factors and COVID-19 transmission.
- Publikační typ
- časopisecké články MeSH
This study examines whether exposure to ambient temperature in nineteenth-century urban space affected the ratio of boys to girls at birth. Furthermore, we investigate the details of temperature effects timing upon sex ratio at birth. The research included 66,009 individual births, aggregated in subsequent months of births for the years 1847-1900, i.e. 33,922 boys and 32,087 girls. The statistical modelling of the probability of a girl being born is based on logistic GAM with penalized splines and automatically selected complexity. Our research emphasizes the significant effect of temperature in the year of conception: the higher the temperature was, the smaller probability of a girl being born was observed. There were also several significant temperature lags before conception and during pregnancy. Our findings indicate that in the past, ambient temperature, similar to psychological stress, hunger, malnutrition, and social and economic factors, influenced the viability of a foetus. Research on the effects of climate on the sex ratio in historical populations may allow for a better understanding of the relationship between environmental factors and reproduction, especially concerning historical populations since due to some cultural limitations, they were more prone to stronger environmental stressors than currently.
- MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- městské obyvatelstvo * MeSH
- novorozenec MeSH
- poměr pohlaví * MeSH
- porod MeSH
- těhotenství MeSH
- teplota * MeSH
- velkoměsta MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- velkoměsta MeSH
BACKGROUND: Only little is known about trends in temperature-mortality associations among the most vulnerable subgroups, especially in the areas of central and eastern Europe, which are considered major climatic hotspots in terms of heatwave exposure. Thus, we aimed to assess trends in temperature-related mortality in the Czech Republic by sex, age and cause of death, and to quantify the temporal evolution of possible inequalities. METHODS: We collected daily time series of all-cause (1987-2019) and cause-specific (1994-2019) mortality by sex and age category, and population-weighted daily mean 2-metre temperatures for each region of the Czech Republic. We applied a quasi-Poisson regression model to estimate the trends in region-specific temperature-mortality associations, with distributed lag non-linear models and multivariate random-effects meta-analysis to derive average associations across the country. We then calculated mortality attributable to non-optimal temperatures and implemented the indicator of sex- and age-dependent inequalities. RESULTS: We observed a similar risk of mortality due to cold temperatures for men and women. Conversely, for warm temperatures, a higher risk was observed for women. Results by age showed a clear pattern of increasing risk due to non-optimum temperatures with increasing age category. The relative risk (RR) related to cold was considerably attenuated in most of the studied subgroups during the study period, whereas an increase in the RR associated with heat was seen in the overall population, in women, in the age category 90+ years and with respect to respiratory causes. Moreover, underlying sex- and age-dependent inequalities experienced substantial growth. CONCLUSIONS: Our findings suggest ongoing adaptation to cold temperatures. Mal/adaptation to hot temperatures occurred unequally among population subgroups and resulted in growing inequalities between the sexes and among age categories.
- MeSH
- lidé MeSH
- mortalita MeSH
- nízká teplota * MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- teplota MeSH
- vysoká teplota * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Geografické názvy
- Česká republika MeSH
Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.
BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.
- MeSH
- dospělí MeSH
- hodnocení vlivů na zdraví * MeSH
- lidé MeSH
- nízká teplota * MeSH
- velkoměsta MeSH
- vysoká teplota * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta MeSH
BACKGROUND: The current study uses a population modeling approach to evaluate and quantify the impact of severity of asphyxia and hypoxic-ischemic encephalopathy (HIE) on the pharmacokinetics of phenobarbital in asphyxiated newborns treated with therapeutic hypothermia. METHODS: Included newborns received phenobarbital (the TOBY trial protocol). 120 plasma samples were available from 50 newborns, median (IQR) weight 3.3 (2.8-3.5) kg and gestational age 39 (39-40) weeks. NONMEM® version 7.2 was used for the data analysis. Age, body weight, sex, concomitant medications, kidney and liver function markers, as well as severity parameters of asphyxia and HIE were tested as potential covariates of pharmacokinetics of phenobarbital. Severe asphyxia was defined as pH of arterial umbilical cord blood ≤7.1 and Apgar 5 ≤5, and severe HIE was defined as time to normalization of amplitude-integrated electroencephalography (aEEG) >24 h. RESULTS: Weight was found to be the only statistically significant covariate for the volume of distribution. At weight of 1 kg volume of distribution was 0.91 L and for every additional kg it increased in 0.91 L. Clearance was 0.00563 L/h. No covariates were statistically significant for the clearance of phenobarbital. CONCLUSIONS: Phenobarbital dose adjustments are not indicated in the studied population, irrespective of the severity of asphyxia or HIE.
- MeSH
- asfyxie novorozenců * komplikace farmakoterapie MeSH
- asfyxie komplikace farmakoterapie MeSH
- dospělí MeSH
- fenobarbital farmakokinetika terapeutické užití MeSH
- lidé MeSH
- mozková hypoxie a ischemie * terapie MeSH
- novorozenec MeSH
- terapeutická hypotermie * metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
Plague, a highly infectious disease caused by Yersinia pestis, has killed millions of people in history and is still active in the natural foci of the world nowadays. Understanding the spatiotemporal patterns of plague outbreaks in history is critically important, as it may help facilitate the prevention and control for potential future outbreaks. This study's objective was to estimate the effect of the topography, vegetation, climate, and other environmental factors on the Y. pestis ecological niche. A maximum entropy algorithm spatially modelled plague occurrence data from 2004-2018 and the environmental variables to evaluate the contribution of the variables to the distribution of Y. pestis. Our results found that the average minimum temperature in September (-8 °C to +5 °C) and the sheep population density (250 sheep per km2) were influential in characterising the niche. The rim of Qinghai Lake showed more favourable conditions for Y. pestis presence than other areas within the study area. Identifying various factors will assist any future modelling efforts. Our suitability map identifies hotspots and will help public health officials in resource allocation in their quest to abate future plague outbreaks.
BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.
- MeSH
- klimatické změny * MeSH
- lidé MeSH
- mortalita MeSH
- velkoměsta MeSH
- vysoká teplota * MeSH
- životní prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Finsko MeSH
- velkoměsta MeSH
Due to the clinically proven benefit of hyperthermia treatments if added to standard cancer therapies for various tumor sites and the recent development of non-invasive temperature measurements using magnetic resonance systems, the hyperthermia community is convinced that it is a time when even patients with brain tumors could benefit from regional microwave hyperthermia, even if they are the subject of a treatment to a vital organ. The purpose of this study was to numerically analyze the ability to achieve a therapeutically relevant constructive superposition of electromagnetic (EM) waves in the treatment of hyperthermia targets within the brain. We evaluated the effect of the target size and position, operating frequency, and the number of antenna elements forming the phased array applicator on the treatment quality. In total, 10 anatomically realistic 2D human head models were considered, in which 10 circular hyperthermia targets with diameters of 20, 25, and 30 mm were examined. Additionally, applicators with 8, 12, 16, and 24 antenna elements and operating frequencies of 434, 650, 915, and 1150 MHz, respectively, were analyzed. For all scenarios considered (4800 combinations), the EM field distributions of individual antenna elements were calculated and treatment planning was performed. Their quality was evaluated using parameters applied in clinical practice, i.e., target coverage (TC) and the target to hot-spot quotient (THQ). The 12-antenna phased array system operating at 434 MHz was the best candidate among all tested systems for HT treatments of glioblastoma tumors. The 12 antenna elements met all the requirements to cover the entire target area; an additional increase in the number of antenna elements did not have a significant effect on the treatment quality.
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide's acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.