water injection
Dotaz
Zobrazit nápovědu
Aging and age-related neurodegenerative disorders are characterized by the dysfunction or loss of brain nicotinic acetylcholine receptors (nAChRs), and these changes may be related to other senescence markers, such as oxidative stress and DNA repair dysfunction. However, the mechanism of nAChR loss in the aging brain and the modification of this process by drugs (e.g., memantine, Mem) are not yet fully understood. To study whether the differences in nAChR expression in the rat brain occur due to aging or oxidative stress and are modulated by Mem, we analyzed nAChR subunits (at RNA and protein levels) and other biomarkers by real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot validation. Twenty-one female Wistar rats were divided into four groups, depending on age, and the oldest group received injections of Mem or water with the use of intragastric catheters. We studied the cerebral grey matter (CGM), subcortical white matter (SCWM), and cerebellum (Ce). Results showed an age-related decrease of α7 nAChR mRNA level in SCWM. The α7 nAChR mRNA loss was accompanied by reduced expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and an increased tumor necrosis factor alpha (TNFα) level. In the water group, we observed a higher level of α7 nAChR protein in the SCWM and Ce. Biomarker levels changed, but to a different extent depending on the brain area. Importantly, the dysfunction in antioxidative status was stopped and even regressed under Mem treatment. After two weeks of treatment, an increase in TP53 protein level and a decrease in 8-oxo-2'deoxyguanosine (8-oxo-2'dG) level were observed. We conclude that Mem administration may be protective against the senescence process by antioxidative mechanisms.
- MeSH
- alfa7 nikotinové acetylcholinové receptory metabolismus genetika MeSH
- DNA-glykosylasy metabolismus genetika MeSH
- krysa rodu rattus MeSH
- memantin * farmakologie MeSH
- mozek * metabolismus účinky léků patologie MeSH
- neurony metabolismus účinky léků MeSH
- nikotinové receptory * metabolismus genetika MeSH
- oxidační stres * účinky léků MeSH
- poškození DNA * účinky léků MeSH
- potkani Wistar * MeSH
- stárnutí * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in x-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as a multimodal contrast enhancement agent for both imaging modalities. We performed proton radiographies at the experimental room of the Trento Proton Therapy Center using a MiniPIX-Timepix detector and dispersions of gadolinium oxide nanoparticles in sunflower oil with mass fractions up to 8wt%. To determine the minimum nanoparticle concentration required for the detectability of small structures, pCT images of a cylindrical water phantom with cavities of varying gadolinium oxide concentration were simulated using a dedicated FLUKA Monte Carlo framework. These findings are complemented by simulating pCT at dose levels from 80 mGy to 320 mGy of artificially modified murine xCT data, mimicking different levels of gadolinium oxide accumulation inside a fictitious tumor volume. To compare the results obtained for proton imaging to x-ray imaging, cone-beam CT images of a cylindrical PMMA phantom with cavities of dispersions of oil and gadolinium oxide nanoparticles with mass fractions up to 8wt% were acquired at a commercial pre-clinical irradiation setup. For proton radiography, considerable contrast enhancement was found for a mass fraction of 4wt%. Slightly lower values were found for the simulated pCT images at imaging doses below 200 mGy. In contrast, full detectability of small gadolinium oxide loaded structures in xCT at comparable imaging dose is already achieved for 0.5wt%. Achieving such concentrations required for pCT imaging inside a tumor volume inin-vivoexperiments may be challenging, yet it might be feasible using different targeting and/or injection strategies.
- MeSH
- fantomy radiodiagnostické * MeSH
- gadolinium * chemie MeSH
- kontrastní látky * chemie MeSH
- myši MeSH
- nanočástice * chemie MeSH
- počítačová rentgenová tomografie MeSH
- protony * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.
- MeSH
- kostní morfogenetické proteiny * metabolismus genetika MeSH
- proudový orgán * embryologie metabolismus MeSH
- rybí proteiny metabolismus genetika MeSH
- ryby genetika MeSH
- signální transdukce * MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A benzodiazepine, diazepam, has been the leading antidote for seizures caused by nerve agents, the most toxic chemical weapons of mass destruction, since the 1960s. However, its limitations have often brought questions about its usefulness. Extensive effort has been devoted into exploring alternatives, such as other benzodiazepines, anticholinergics, or glutamate antagonists. However, only few showed clear clinical benefit. The only two options to ultimately reach clinical milestones are Avizafone, a water-soluble prodrug of diazepam adopted by the French and UK armed forces, and intramuscular midazolam, adopted by the US Army. The recently FDA-approved new intramuscular application of midazolam brought several advantages, such as rapid onset of action, short duration with predictable pharmacokinetics, increased water solubility for aqueous injectable solutions, and prolonged storage stability. Herein, we discuss the pitfalls and prospects of using midazolam as a substitute in anticonvulsant therapy with a particular focus on military purposes in combat casualty care. We have also considered and discussed several other alternatives that are currently at the experimental level. Recent studies have shown the superiority of midazolam over other benzodiazepines in the medical management of poisoned casualties. While its use in emergency care is straightforward, the proper dose for soldiers under battlefield conditions is questionable due to its sedative effects.
- MeSH
- antikonvulziva * aplikace a dávkování terapeutické užití MeSH
- diazepam * aplikace a dávkování MeSH
- lidé MeSH
- midazolam * aplikace a dávkování MeSH
- nervová bojová látka * MeSH
- záchvaty * farmakoterapie chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: A novel supported liquid extraction approach using small polymeric nanofibrous discs was demonstrated and applied to the analysis of real river water. Nanofibrous discs were tested to extract model mixture of 9 common water contaminants 4-nitrophenol, various chlorophenols, bisphenol A, permethrin, and fenoxycarb featuring a wide range of log P values (1.9-6.5). Polyacrylonitrile, polyhydroxybutyrate, and polylactic acid nanofibers were selected as adsorptive materials. One-step desorption was performed directly in HPLC vials, to avoid time-consuming evaporation and reconstitution steps. The discs were allowed to sediment to the bottom of the vial before injection into the chromatographic system. RESULTS: Various parameters affecting the extraction efficiency including 1-octanol volume, extraction time, ionic strength, and sample volume were investigated and optimized. Wetting the nanofiber discs with 1-octanol resulted in up to 20-fold increase in enrichment factor when compared to non-wetted polymer counterparts. The highest enrichment factors were observed for analytes with a log P range of 3.3-4.5. Our developed method showed good linearity in the range 20-200 μg/L for all analytes tested. Satisfactory repeatability with RSD <13 % were achieved covering all steps including disc preparation, wetting, extraction/elution, and chromatography analysis, and recoveries ranged from 58.93 to 121.43 %. SIGNIFICANCE: This work represents novel simple supported liquid extraction approach using impregnated polymer nanofiber discs. Using only 50 μL 1-octanol, we reduced the organic solvent compared to other extraction methods. There was no need for any plastic cartridge to hold the sorbent and direct in-vial desorption reduced the unnecessary, time-consuming steps and simplified the sample preparation protocol.
- Publikační typ
- časopisecké články MeSH
A novel sorbent for solid phase extraction (SPE) based on hybrid nanofibrous polycaprolactone containing graphene nanoparticles has been prepared. The preparation of hybrid polymer nanofibers with a very high 1:1 polymer/graphene ratio was achieved for the first time using alternating current electrospinning. The final appearance of these nanofibers was a thick porous layer that was cut into the shape of easy-to-handle extraction discs. Based on the preliminary study in which the graphene content varied, 30% graphene-doped nanofibers (w/w) exhibited the highest recoveries and enabled a significant increase in the retention of analytes, 2-25 times in comparison to PCL. The incorporation of graphene resulted in a higher surface area of 12 g/m2 compared to 2 g/m2 determined for the native polycaprolactone (PCL) nanofibers. This unique material was applied for a simple stirred disc sorptive extraction and preconcentration of trace levels of emerging organic environmental contaminants, bisphenols A, AF, AP, C, S, Z, 3-chlorophenol, and pesticides fenoxycarb, deltamethrin, and kadethrin from surface waters prior to HPLC-DAD determination. This was accomplished by stirring the unsupported nanofiber disc in a large-volume sample with RSD of five extractions of 3-15%. Recoveries yielded 87-120%, except 52% for bisphenol S due to its high polarity. Optimization of the extraction procedure included conditioning, sample volume, extraction time, and elution solvent. Our novel desorption procedure carried out in a vial used for the direct injection into the HPLC system significantly reduced sample handling and minimized potential human error.
- Publikační typ
- časopisecké články MeSH
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
- MeSH
- aldehydy chemie MeSH
- chondroitinsulfáty * chemie MeSH
- hydrogely * chemie farmakologie MeSH
- interleukin-6 metabolismus MeSH
- kyselina hyaluronová * chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- minocyklin * chemie farmakologie aplikace a dávkování MeSH
- nosiče léků * chemie MeSH
- polyelektrolyty * chemie MeSH
- uvolňování léčiv MeSH
- želatina * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.
- MeSH
- akutní poškození ledvin * chemicky indukované patologie metabolismus prevence a kontrola farmakoterapie MeSH
- cisplatina * toxicita MeSH
- diminazen * analogy a deriváty farmakologie terapeutické užití MeSH
- inhibitory ACE farmakologie MeSH
- krysa rodu rattus MeSH
- ledviny účinky léků patologie metabolismus MeSH
- lisinopril * farmakologie MeSH
- potkani Wistar * MeSH
- protinádorové látky toxicita MeSH
- valsartan * farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
To investigate the exact effects of dietary choline on hypertensive heart disease (HHD) and explore the potential mechanisms, male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into five groups as follows: WKY group, WKY + Choline group, SHR group, SHR + Choline group, and SHR + Choline + NaHS group. In choline treatment groups, rats were fed with 1.3% (w/v) choline in the drinking water for 3 months. The rats in the SHR + Choline + NaHS group were intraperitoneally injected with NaHS (100 micromol/kg/day, a hydrogen sulfide (H2S) donor) for 3 months. After 3 months, left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), the indicators of cardiac function measured by echocardiography, were increased significantly in SHR as compared to WKY, although there was no significant difference in collagen volumes and Bax/Bcl-2 ratio between the two groups, indicating the early stage of cardiac hypertrophy. There was a significant decrease in LVEF and LVFS and an increase in collagen volumes and Bax/Bcl-2 ratio in SHR fed with choline, meanwhile, plasma H2S levels were significantly decreased significantly in SHR fed with choline accompanying by the decrease of cystathionine-gamma-lyase (CSE) activity. Three months of NaHS significantly increased plasma H2S levels, ameliorated cardiac dysfunction and inhibited cardiac fibrosis and apoptosis in SHR fed with choline. In conclusion, choline aggravated cardiac dysfunction in HHD through inhibiting the production of endogenous H2S, which was reversed by supplementation of exogenous H2S donor.
- MeSH
- funkce levé komory srdeční MeSH
- hypertenze * chemicky indukované MeSH
- kolagen MeSH
- krysa rodu rattus MeSH
- nemoci srdce * MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- protein X asociovaný s bcl-2 MeSH
- sulfan * MeSH
- sulfidy * MeSH
- tepový objem MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH