Nejvíce citovaný článek - PubMed ID 16958589
Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats
Axon regeneration in the CNS is inhibited by many extrinsic and intrinsic factors. Because these act in parallel, no single intervention has been sufficient to enable full regeneration of damaged axons in the adult mammalian CNS. In the external environment, NogoA and CSPGs are strongly inhibitory to the regeneration of adult axons. CNS neurons lose intrinsic regenerative ability as they mature: embryonic but not mature neurons can grow axons for long distances when transplanted into the adult CNS, and regeneration fails with maturity in in vitro axotomy models. The causes of this loss of regeneration include partitioning of neurons into axonal and dendritic fields with many growth-related molecules directed specifically to dendrites and excluded from axons, changes in axonal signalling due to changes in expression and localization of receptors and their ligands, changes in local translation of proteins in axons, and changes in cytoskeletal dynamics after injury. Also with neuronal maturation come epigenetic changes in neurons, with many of the transcription factor binding sites that drive axon growth-related genes becoming inaccessible. The overall aim for successful regeneration is to ensure that the right molecules are expressed after axotomy and to arrange for them to be transported to the right place in the neuron, including the damaged axon tip.
- Klíčová slova
- Axon regeneration, Axonal transport, Chondroitin sulphate proteoglycans, Chondroitinase, Epigenetics, Integrins, NogoA, PTEN, Rabs, RhoA, Schwann cell, Signalling, Trafficking,
- MeSH
- axonální transport fyziologie MeSH
- axony fyziologie MeSH
- centrální nervový systém cytologie fyziologie MeSH
- lidé MeSH
- nervový útlum fyziologie MeSH
- neurogeneze fyziologie MeSH
- proteosyntéza fyziologie MeSH
- regenerace nervu fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
- Klíčová slova
- Cytotoxicity, Macrophages, Nanoparticles, Oxidative stress,
- MeSH
- antioxidancia metabolismus toxicita MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- kyselina askorbová metabolismus toxicita MeSH
- magnetické nanočástice toxicita MeSH
- peritoneální makrofágy účinky léků metabolismus MeSH
- potkani Wistar MeSH
- synergismus léků MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina askorbová MeSH
- magnetické nanočástice MeSH
Spinal cord injury (SCI), is a devastating condition leading to the loss of locomotor and sensory function below the injured segment. Despite some progress in acute SCI treatment using stem cells and biomaterials, chronic SCI remains to be addressed. We have assessed the use of laminin-coated hydrogel with dual porosity, seeded with induced pluripotent stem cell-derived neural progenitors (iPSC-NPs), in a rat model of chronic SCI. iPSC-NPs cultured for 3 weeks in hydrogel in vitro were positive for nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2). These cell-polymer constructs were implanted into a balloon compression lesion, 5 weeks after lesion induction. Animals were behaviorally tested, and spinal cord tissue was immunohistochemically analyzed 28 weeks after SCI. The implanted iPSC-NPs survived in the scaffold for the entire experimental period. Host axons, astrocytes and blood vessels grew into the implant and an increased sprouting of host TH+ fibers was observed in the lesion vicinity. The implantation of iPSC-NP-LHM cell-polymer construct into the chronic SCI led to the integration of material into the injured spinal cord, reduced cavitation and supported the iPSC-NPs survival, but did not result in a statistically significant improvement of locomotor recovery.
- Klíčová slova
- Chronic spinal cord injury, HEMA hydrogel, human induced pluripotent stem cells, laminin, neural progenitors, surface charge,
- MeSH
- buněčná diferenciace MeSH
- chronická nemoc MeSH
- hydrogely MeSH
- indukované pluripotentní kmenové buňky metabolismus MeSH
- krysa rodu Rattus MeSH
- nervové kmenové buňky transplantace MeSH
- poranění míchy terapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogely MeSH
Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.
- Klíčová slova
- curcumin, epigallocatechin gallate, inflammatory response, neural regeneration, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Rat mesenchymal stem cells (rMSCs) labeled with 1) poly-l-lysine-coated superparamagnetic iron oxide nanoparticles or 2) silica-coated cobalt-zinc-iron nanoparticles were implanted into the left brain hemisphere of rats, to assess their effects on the levels of oxidative damage to biological macromolecules in brain tissue. METHODS: Controls were implanted with unlabeled rMSCs. Animals were sacrificed 24 hours or 4 weeks after the treatment, and the implantation site along with the surrounding tissue was isolated from the brain. At the same intervals, parallel groups of animals were scanned in vivo by magnetic resonance imaging (MRI). The comet assay with enzymes of excision DNA repair (endonuclease III and formamidopyrimidine-DNA glycosylase) was used to analyze breaks and oxidative damage to DNA in the brain tissue. Oxidative damage to proteins and lipids was determined by measuring the levels of carbonyl groups and 15-F2t-isoprostane (enzyme-linked immunosorbent assay). MRI displayed implants of labeled cells as extensive hypointense areas in the brain tissue. In histological sections, the expression of glial fibrillary acidic protein and CD68 was analyzed to detect astrogliosis and inflammatory response. RESULTS: Both contrast labels caused a similar response in the T2-weighted magnetic resonance (MR) image and the signal was clearly visible within 4 weeks after implantation of rMSCs. No increase of oxidative damage to DNA, lipids, or proteins over the control values was detected in any sample of brain tissue from the treated animals. Also, immunohistochemistry did not indicate any serious tissue impairment around the graft. CONCLUSION: Both tested types of nanoparticles appear to be prospective and safe labels for tracking the transplanted cells by MR.
- Klíčová slova
- MRI, cell transplantation, comet assay, genotoxicity, lipid peroxidation, protein oxidative damage,
- MeSH
- dinoprost analogy a deriváty MeSH
- ELISA MeSH
- isoprostany analýza metabolismus MeSH
- kobalt chemie MeSH
- kovové nanočástice aplikace a dávkování chemie toxicita MeSH
- magnetická rezonanční tomografie metody MeSH
- mezenchymální kmenové buňky chemie MeSH
- mozek diagnostické zobrazování účinky léků metabolismus MeSH
- oxid křemičitý chemie MeSH
- potkani inbrední LEW MeSH
- prospektivní studie MeSH
- tkáňové extrakty MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- železité sloučeniny chemie MeSH
- železo chemie MeSH
- zinek chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-epi-prostaglandin F2alpha MeSH Prohlížeč
- dinoprost MeSH
- ferric oxide MeSH Prohlížeč
- isoprostany MeSH
- kobalt MeSH
- oxid křemičitý MeSH
- tkáňové extrakty MeSH
- železité sloučeniny MeSH
- železo MeSH
- zinek MeSH
Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.
- Klíčová slova
- spinal cord injury, stem cell labeling, stem cells,
- MeSH
- buněčný tracking metody MeSH
- lidé MeSH
- nervové kmenové buňky cytologie transplantace MeSH
- neurogeneze MeSH
- poranění míchy diagnostické zobrazování patologie terapie MeSH
- regenerace nervu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9-T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury.
- Klíčová slova
- NF-κB, curcumin, cytokines, inflammation, secondary processes, spinal cord injury,
- MeSH
- antiflogistika farmakologie MeSH
- imunomodulace * MeSH
- krysa rodu Rattus MeSH
- kurkumin farmakologie MeSH
- mícha patofyziologie MeSH
- modely nemocí na zvířatech MeSH
- obnova funkce * MeSH
- poranění míchy farmakoterapie imunologie patofyziologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- kurkumin MeSH
Transplantation of mesenchymal stem cells (MSC) improves functional recovery in experimental models of spinal cord injury (SCI); however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB) and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1β, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application.
- MeSH
- chemokin CCL5 genetika metabolismus MeSH
- fibroblastový růstový faktor 2 genetika metabolismus MeSH
- gliový fibrilární kyselý protein genetika metabolismus MeSH
- interferonové regulační faktory genetika metabolismus MeSH
- interleukiny genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lokomoce MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- poranění míchy metabolismus terapie MeSH
- potkani Wistar MeSH
- protein GAP-43 genetika metabolismus MeSH
- receptory imunologické genetika metabolismus MeSH
- TNF-alfa genetika metabolismus MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CCL5 MeSH
- fibroblastový růstový faktor 2 MeSH
- gliový fibrilární kyselý protein MeSH
- interferonové regulační faktory MeSH
- interleukiny MeSH
- protein GAP-43 MeSH
- receptory imunologické MeSH
- TNF-alfa MeSH
BACKGROUND: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeutic potential and have brought hope to patients suffering from devastating pathologies of different organs and systems. AIMS: Here, we briefly review the main achievements and trends in cell-based therapy, with an emphasis on the main types of stem cells: embryonic, mesenchymal stromal and induced pluripotent cells. DISCUSSION: Many questions regarding the application of stem cells remain unanswered, particularly tumorigenicity, immune rejection and danger of gene manipulation. Currently, only MSC seems to be safe and might be considered to be a leading candidate for human application to treat pathologies that affect the cardiovascular, neurological and musculoskeletal systems.
- Klíčová slova
- Clinical Trials, Embryonic Stem Cells, Induced Pluripotent Stem Cells, Mesenchymal Stromal Cells, PACS: 87.19.L-; 87.19.LW, Stem Cells,
- Publikační typ
- časopisecké články MeSH
The transplantation of mesenchymal stem cells (MSC) is currently under study as a therapeutic approach for spinal cord injury, and the number of transplanted cells that reach the lesioned tissue is one of the critical parameters. In this study, intrathecally transplanted cells labeled with superparamagnetic iron oxide nanoparticles were guided by a magnetic field and successfully targeted near the lesion site in the rat spinal cord. Magnetic resonance imaging and histological analysis revealed significant differences in cell numbers and cell distribution near the lesion site under the magnet in comparison to control groups. The cell distribution correlated well with the calculated distribution of magnetic forces exerted on the transplanted cells in the subarachnoid space and lesion site. The kinetics of the cells' accumulation near the lesion site is described within the framework of a mathematical model that reveals those parameters critical for cell targeting and suggests ways to enhance the efficiency of magnetic cell delivery. In particular, we show that the targeting efficiency can be increased by using magnets that produce spatially modulated stray fields. Such magnetic systems with tunable geometric parameters may provide the additional level of control needed to enhance the efficiency of stem cell delivery in spinal cord injury.
- Klíčová slova
- magnetism, mesenchymal stem cell, modeling, nanoparticle, spinal cord injury,
- MeSH
- histocytochemie MeSH
- krysa rodu Rattus MeSH
- magnetické nanočástice aplikace a dávkování chemie terapeutické užití MeSH
- magnety * MeSH
- mezenchymální kmenové buňky chemie cytologie MeSH
- mícha chemie cytologie MeSH
- poranění míchy chirurgie MeSH
- potkani Sprague-Dawley MeSH
- spinální injekce MeSH
- teoretické modely MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- magnetické nanočástice MeSH