Most cited article - PubMed ID 30910791
Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice
BACKGROUND: Lyme disease, caused by Borrelia burgdorferi sensu lato (s.l.), is the most common vector-borne disease in the Northern Hemisphere, with Ixodes ticks as its primary vectors. However, many patients do not recall tick bites, fueling speculation about alternative transmission routes, particularly via mosquito bites. This belief is reinforced by studies reporting Borrelia presence in mosquitoes. This study evaluates whether three mosquito species can acquire, maintain, and transmit Borrelia spirochetes. METHODS: Mosquitoes (Aedes aegypti, Culex quinquefasciatus, and Culex pipiens biotype molestus) were fed on Borrelia-infected mice to assess pathogen acquisition. Additional experiments involved ex vivo feeding on Borrelia-enriched blood to examine spirochete persistence in the mosquito gut. The potential for mechanical transmission was tested by simulating interrupted feeding between infected and naive hosts. The role of trypsin in Borrelia survival and infectivity was also investigated. RESULTS: Mosquitoes exhibited low efficiency in acquiring Borrelia from infected hosts. Spirochetes artificially introduced through ex vivo blood meals were rapidly eliminated during digestion, primarily due to trypsin activity. Inhibition of trypsin prolonged spirochete persistence and infectivity in the mosquito gut. Mechanical transmission experiments revealed no evidence of Borrelia transmission from infected to naive hosts. CONCLUSIONS: Our findings demonstrate that mosquitoes lack the biological capacity to efficiently acquire and maintain B. burgdorferi s.l. spirochetes and are unable to transmit them through natural or mechanical means. This study provides compelling evidence against mosquito-borne transmission of Lyme disease and reinforces Ixodes ticks as the sole competent vectors, which is crucial for targeted public health interventions and accurate risk communication.
- Keywords
- Borrelia, Borreliosis, Lyme disease, Mosquito, Tick, Transmission,
- MeSH
- Aedes * microbiology MeSH
- Borrelia burgdorferi * physiology MeSH
- Culex * microbiology MeSH
- Ixodes microbiology MeSH
- Mosquito Vectors * microbiology MeSH
- Lyme Disease * transmission microbiology MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The vector competence of blood-feeding arthropods is influenced by the interaction between pathogens and the immune system of the vector. The Toll and IMD (immune deficiency) signaling pathways play a key role in the regulation of innate immunity in both the Drosophila model and blood-feeding insects. However, in ticks (chelicerates), immune determination for pathogen acquisition and transmission has not yet been fully explored. Here, we have mapped homologs of insect Toll and IMD pathways in the European tick Ixodes ricinus, an important vector of human and animal diseases. We show that most genes of the Toll pathway are well conserved, whereas the IMD pathway has been greatly reduced. We therefore investigated the functions of the individual components of the tick Toll pathway and found that, unlike in Drosophila, it was specifically activated by Gram-negative bacteria. The activation of pathway induced the expression of defensin (defIR), the first identified downstream effector gene of the tick Toll pathway. Borrelia, an atypical bacterium and causative agent of Lyme borreliosis, bypassed Toll-mediated recognition in I. ricinus and also resisted systemic effector molecules when the Toll pathway was activated by silencing its repressor cactus via RNA interference. Babesia, an apicomplexan parasite, also avoided Toll-mediated recognition. Strikingly, unlike Borrelia, the number of Babesia parasites reaching the salivary glands during tick infection was significantly reduced by knocking down cactus. The simultaneous silencing of cactus and dorsal resulted in greater infections and underscored the importance of tick immunity in regulating parasite infections in these important disease vectors.
- MeSH
- Babesia microti * immunology MeSH
- Babesiosis immunology parasitology MeSH
- Ixodes * parasitology immunology MeSH
- Immunity, Innate MeSH
- Signal Transduction * MeSH
- Toll-Like Receptors * metabolism immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Toll-Like Receptors * MeSH
Lyme disease, a tick-borne illness caused by Borrelia spirochetes, poses a significant threat to public health. While acaricides effectively control ticks on pets and livestock, their impact on pathogen transmission is often unclear. This study investigated the acaricidal efficacy of fipronil against Ixodes ricinus ticks and its potential to block Borrelia afzelii transmission. Initially, we employed the ex vivo membrane blood-feeding system to assess the dose–response acaricidal activity of ivermectin, fipronil and its metabolite fipronil sulfone, when supplemented in the blood meal throughout tick feeding. To obtain the temporal resolution of their acaricidal activity, ticks were allowed to initiate blood feeding on an artificial membrane before being exposed to a 1-time topical application of these acaricides. Fipronil demonstrated superior speed of acaricidal activity, with onset of tick moribundity within a few hours, prompting its selection for further in vivo testing with Borrelia-infected ticks. The I. ricinus nymphs infected with B. afzelii were topically treated with fipronil shortly after attachment to mice. Four weeks post-feeding, the skin and internal organs were examined for the presence of Borrelia. No spirochetes were detected in any organ of mice exposed to fipronil-treated ticks, while 9 out of 10 control mice, exposed to non-treated infectious ticks, displayed Borrelia infection. The in vitro co-culture experiments confirmed that fipronil had no direct effect on Borrelia viability, indicating a tick-directed effect. Overall, these results underline the potential of fipronil as a valuable tool for tick control strategies and suggest a concept for acaricide-mediated Borrelia-transmission blockers.
- Keywords
- Borrelia afzelii, Ixodes ricinus, Lyme disease, acaricide, ex vivo membrane blood feeding, fipronil, ivermectin, spirochetes, ticks,
- MeSH
- Acaricides * pharmacology MeSH
- Borrelia burgdorferi Group * drug effects physiology MeSH
- Ixodes * microbiology drug effects MeSH
- Lyme Disease * transmission prevention & control microbiology MeSH
- Mice MeSH
- Nymph microbiology drug effects MeSH
- Pyrazoles * pharmacology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acaricides * MeSH
- fipronil MeSH Browser
- Pyrazoles * MeSH
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
- Keywords
- Borrelia burgdorferi, Lyme disease, clinical manifestations, pathogenicity, tick-borne disease, virulence determinants,
- MeSH
- Borrelia burgdorferi * genetics MeSH
- Virulence Factors MeSH
- Humans MeSH
- Lyme Disease * MeSH
- Mammals MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Virulence Factors MeSH
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.
- Keywords
- Borrelia, Ixodes, antimicrobial peptides, label-free quantification, lipid metabolism, midgut, protease inhibitors, proteases, proteome, ticks,
- MeSH
- Ixodes * parasitology MeSH
- Proteome MeSH
- Proteomics MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteome MeSH
Anaplasma phagocytophilum is the causative agent of tick-borne fever (TBF) and human granulocytic anaplasmosis (HGA) and is currently considered an emerging disease in the USA, Europe, and Asia. The increased prevalence of A. phagocytophilum as a human pathogen requires the detailed characterization of human isolates and the implementation of appropriate animal models. In this study, we demonstrated that the dynamics of infection with the human isolate of A. phagocytophilum NY-18 was variable in three different strains of mice (SCID, C3H/HeN, BALB/c). We further evaluated the ability of Ixodes ricinus to acquire and transmit A. phagocytophilum NY-18 and compared it with Ixodes scapularis. Larvae of both tick species effectively acquired the pathogen while feeding on infected mice. The infection rates then decreased during the development to nymphs. Interestingly, molted I. ricinus nymphs were unable to transmit the pathogen to naïve mice, which contrasted with I. scapularis. The results of our study suggest that I. ricinus is not a competent vector for the American human Anaplasma isolate. Further studies are needed to establish reliable transmission models for I. ricinus and European human isolate(s) of A. phagocytophilum.
- Keywords
- Anaplasma phagocytophilum, Ixodes ricinus, Ixodes scapularis, animal model, human granulocytic anaplasmosis, tick, transmission, vector competence,
- Publication type
- Journal Article MeSH
It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.
- Keywords
- Borrelia, Lyme disease, borreliosis, tRNA synthetase, tick, transmission,
- MeSH
- Acaricides pharmacology MeSH
- Amino Acyl-tRNA Synthetases antagonists & inhibitors genetics MeSH
- Borrelia burgdorferi Group MeSH
- Ticks drug effects microbiology MeSH
- Humans MeSH
- Lyme Disease drug therapy microbiology transmission MeSH
- Protein Biosynthesis drug effects MeSH
- Drug Development MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acaricides MeSH
- Amino Acyl-tRNA Synthetases MeSH
Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.
- Keywords
- Ixodes ricinus, blood coagulation, crystal structure, parasite, saliva, serpin, tick,
- MeSH
- Complement Activation drug effects immunology physiology MeSH
- Erythrocytes metabolism MeSH
- Gene Expression genetics MeSH
- Blood Coagulation drug effects physiology MeSH
- Ixodes enzymology genetics metabolism MeSH
- Complement System Proteins metabolism MeSH
- Lyme Disease MeSH
- Nymph MeSH
- Arthropod Proteins metabolism MeSH
- Gene Expression Regulation genetics MeSH
- Serpins metabolism ultrastructure MeSH
- Salivary Glands metabolism MeSH
- Saliva chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Complement System Proteins MeSH
- Arthropod Proteins MeSH
- Serpins MeSH
In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, immunization of rabbits did not provide equivalent levels of protection. Our results show that YSD is a powerful tool to identify immunodominant antigens in humans exposed to tick bites, yet vaccination with the three selected TSGPs did not provide protection in the present form. Future efforts will focus on exploring the biological functions of these proteins, consider alternative systems for recombinant protein generation and vaccination platforms and assess the potential of the other identified immunogenic TSGPs.
- MeSH
- Antigens blood immunology isolation & purification MeSH
- Borrelia burgdorferi isolation & purification MeSH
- Immunization MeSH
- Tick Infestations immunology parasitology MeSH
- Ixodes immunology MeSH
- Tick Bites immunology MeSH
- Rabbits MeSH
- Humans MeSH
- Lyme Disease blood parasitology transmission MeSH
- Cell Surface Display Techniques methods MeSH
- Peptide Library MeSH
- Peptide Fragments immunology MeSH
- Saccharomyces cerevisiae MeSH
- Cattle MeSH
- Salivary Proteins and Peptides immunology MeSH
- Salivary Glands immunology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Male MeSH
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens MeSH
- Peptide Library MeSH
- Peptide Fragments MeSH
- Salivary Proteins and Peptides MeSH
Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Biological Evolution MeSH
- Borrelia burgdorferi genetics growth & development immunology MeSH
- Species Specificity MeSH
- Immune Evasion physiology MeSH
- Host-Pathogen Interactions physiology MeSH
- Ticks MeSH
- Complement Factor H metabolism MeSH
- Quail MeSH
- Humans MeSH
- Lyme Disease immunology transmission MeSH
- Mice MeSH
- Viral Tropism physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Bacterial Proteins MeSH
- cold shock protein CS7.4, Bacteria MeSH Browser
- Complement Factor H MeSH