Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26023938
PubMed Central
PMC6272341
DOI
10.3390/molecules20069767
PII: molecules20069767
Knihovny.cz E-resources
- Keywords
- hydroxynaphthalene-2-carboxanilides, in vitro antibacterial activity, in vitro antimycobacterial activity, in vitro cytotoxicity, photosynthetic electron transport inhibition, structure-activity relationships,
- MeSH
- Ampicillin pharmacology MeSH
- Anilides chemical synthesis pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Cell Line MeSH
- Chloroplasts drug effects physiology MeSH
- Photosynthesis drug effects physiology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects growth & development MeSH
- Microbial Sensitivity Tests MeSH
- Microbial Viability drug effects MeSH
- Monocytes cytology drug effects MeSH
- Mycobacterium avium subsp. paratuberculosis drug effects growth & development MeSH
- Mycobacterium tuberculosis drug effects growth & development MeSH
- Naphthalenes chemical synthesis pharmacology MeSH
- Rifampin pharmacology MeSH
- Spinacia oleracea drug effects physiology MeSH
- Electron Transport drug effects physiology MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ampicillin MeSH
- Anilides MeSH
- Anti-Bacterial Agents MeSH
- Naphthalenes MeSH
- Rifampin MeSH
A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.
Department of Biological Sciences Cork Institute of Technology Bishopstown Cork Ireland
Global Change Research Centre AS CR Belidla 986 4a 60300 Brno Czech Republic
See more in PubMed
Kaku N., Yanagihara K., Morinaga Y., Yamada K., Harada Y., Migiyama Y., Nagaoka K., Matsuda J., Uno N., Hasegawa H., et al. Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. J. Infect. Chemother. 2014;20:350–355. doi: 10.1016/j.jiac.2013.12.009. PubMed DOI
Lodise T.P., McKinnon P.S. Clinical and economic impact of methicillin resistance in patients with Staphylococcus aureus bacteremia. Diagn. Microbiol. Infect. Dis. 2005;52:113–122. doi: 10.1016/j.diagmicrobio.2005.02.007. PubMed DOI
Stefani S., Chung D.R., Lindsay J.A., Friedrich A.W., Kearns A.M., Westh H., Mackenzie F.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents. 2012;39:273–282. doi: 10.1016/j.ijantimicag.2011.09.030. PubMed DOI
Wilcox M.H. MRSA new treatments on the horizon: Current status. Injury. 2011;42:S42–S44. doi: 10.1016/S0020-1383(11)70132-2. PubMed DOI
World Health Organization . Global Tuberculosis Report 2014. WHO Press; Geneva, Switzerland: 2014.
Ioachimescu O.C., Tomford J.W. Nontuberculous mycobacterial disorders. In: Carey W., editor. Disease Management Project. Cleveland Clinic—Centre for Continuing Education; Cleveland, OH, USA: 2015. [(accessed on 15 April 2015)]. Available online: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/infectious-disease/nontuberculous-mycobacterial-disorders/Default.htm.
Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed. Res. Int. 2015;2015 doi: 10.1155/2015/349534. PubMed DOI PMC
Liechty C.H., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI
Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI
Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI
Myung K., Klittich C.J. Can agricultural fungicides accelerate the discovery of human antifungal drugs? Drug Discov. Today. 2015;20:7–10. doi: 10.1016/j.drudis.2014.08.010. PubMed DOI
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar B., Imramovsky A., O’Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed
Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed
Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N'-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed
Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed
Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI
De Marco A., de Candia M., Carotti A., Cellamare S., de Candia E., Altomare C. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides. Eur. J. Pharm. Sci. 2004;22:153–164. doi: 10.1016/j.ejps.2004.03.003. PubMed DOI
Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3 doi: 10.1371/journal.pone.0002375. PubMed DOI PMC
Rath T., Roderfeld M., Blocher S., Rhode A., Basler T., Akineden O., Abdulmawjood A., Halwe J.M., Goethe R., Bulte M., et al. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis. BMC Gastroenterol. 2011;11 doi: 10.1186/1471-230X-11-34. PubMed DOI PMC
National Committee for Clinical Laboratory Standards . Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. NCCLS; Wayne, PA, USA: 2011. Approved Standard, M24-A2, 2nd ed. PubMed
Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI
Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. In Tech; Rijeka, Croatia: 2012. pp. 147–168.
Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI
Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
Izawa S. Acceptors and donors for chloroplast electron transpor. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA; London, UK: 1980. pp. 413–434. part C.
Borse T.H., Maheswarim V.L., Baviskar M.P. Effect of diphenyl carbazide on the metribuzin induced inhibition of photosystem-II photochemistry. J. Plant Biochem. Biotechnol. 2000;9:119–121. doi: 10.1007/BF03263097. DOI
Purcell M., Leroux G., Carpentier R. Interaction of the electron donor diphenylcarbazide with the herbicide-binding niche of photosystem II. Biochim. Biophys. Acta. 1991;1058:374–378. doi: 10.1016/S0005-2728(05)80133-1. DOI
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Otevrel J., Bobal P., Zadrazilova I., Govender R., Pesko M., Keltosova S., Koleckarova P., Marsalek P., Imramovsky A., Coffey A., et al. Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides. Molecules. 2013;18:10648–10670. doi: 10.3390/molecules180910648. PubMed DOI PMC
Kralova K., Sersen F., Miletin M., Dolezal M. Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chem. Pap. 2002;56:214–217.
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Govindjee A. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI
Kralova K., Sersen F., Pesko M., Waisser K., Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides—Inhibitors of photosynthesis. Chem. Pap. 2014;68:46–52. doi: 10.2478/s11696-013-0416-7. DOI
Rupe H., Seiberth M., Kussmaul H. Stereoisomere Abkömmlinge des Aminomethylencamphers. Helv. Chim. Acta. 1920;3:50–70. doi: 10.1002/hlca.19200030106. DOI
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. NCCLS; Wayne, PA, USA: 2000. Approved Standard, 5th ed.; CLSI Document M7-A5.
National Committee for Clinical Laboratory Standards . Performance Standards for Antimicrobial Susceptibility Testing. NCCLS; Wayne, MI, USA: 2002. 12th Informational Supplement M100-S12.
Gonec T., Kos J., Nevin E., Govender R., Pesko M., Tengler J., Kushkevych I., Stastna V., Oravec M., Kollar P., et al. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides. Molecules. 2014;19:10386–10409. doi: 10.3390/molecules190710386. PubMed DOI PMC
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †
N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity