• This record comes from PubMed

Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides

. 2015 May 27 ; 20 (6) : 9767-87. [epub] 20150527

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 26023938
PubMed Central PMC6272341
DOI 10.3390/molecules20069767
PII: molecules20069767
Knihovny.cz E-resources

A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.

See more in PubMed

Kaku N., Yanagihara K., Morinaga Y., Yamada K., Harada Y., Migiyama Y., Nagaoka K., Matsuda J., Uno N., Hasegawa H., et al. Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. J. Infect. Chemother. 2014;20:350–355. doi: 10.1016/j.jiac.2013.12.009. PubMed DOI

Lodise T.P., McKinnon P.S. Clinical and economic impact of methicillin resistance in patients with Staphylococcus aureus bacteremia. Diagn. Microbiol. Infect. Dis. 2005;52:113–122. doi: 10.1016/j.diagmicrobio.2005.02.007. PubMed DOI

Stefani S., Chung D.R., Lindsay J.A., Friedrich A.W., Kearns A.M., Westh H., Mackenzie F.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents. 2012;39:273–282. doi: 10.1016/j.ijantimicag.2011.09.030. PubMed DOI

Wilcox M.H. MRSA new treatments on the horizon: Current status. Injury. 2011;42:S42–S44. doi: 10.1016/S0020-1383(11)70132-2. PubMed DOI

World Health Organization . Global Tuberculosis Report 2014. WHO Press; Geneva, Switzerland: 2014.

Ioachimescu O.C., Tomford J.W. Nontuberculous mycobacterial disorders. In: Carey W., editor. Disease Management Project. Cleveland Clinic—Centre for Continuing Education; Cleveland, OH, USA: 2015. [(accessed on 15 April 2015)]. Available online: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/infectious-disease/nontuberculous-mycobacterial-disorders/Default.htm.

Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed. Res. Int. 2015;2015 doi: 10.1155/2015/349534. PubMed DOI PMC

Liechty C.H., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI

Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI

Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI

Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI

Myung K., Klittich C.J. Can agricultural fungicides accelerate the discovery of human antifungal drugs? Drug Discov. Today. 2015;20:7–10. doi: 10.1016/j.drudis.2014.08.010. PubMed DOI

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar B., Imramovsky A., O’Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed

Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed

Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N'-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed

Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed

Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI

De Marco A., de Candia M., Carotti A., Cellamare S., de Candia E., Altomare C. Lipophilicity-related inhibition of blood platelet aggregation by nipecotic acid anilides. Eur. J. Pharm. Sci. 2004;22:153–164. doi: 10.1016/j.ejps.2004.03.003. PubMed DOI

Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3 doi: 10.1371/journal.pone.0002375. PubMed DOI PMC

Rath T., Roderfeld M., Blocher S., Rhode A., Basler T., Akineden O., Abdulmawjood A., Halwe J.M., Goethe R., Bulte M., et al. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis. BMC Gastroenterol. 2011;11 doi: 10.1186/1471-230X-11-34. PubMed DOI PMC

National Committee for Clinical Laboratory Standards . Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. NCCLS; Wayne, PA, USA: 2011. Approved Standard, M24-A2, 2nd ed. PubMed

Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. In Tech; Rijeka, Croatia: 2012. pp. 147–168.

Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI

Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI

Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI

Izawa S. Acceptors and donors for chloroplast electron transpor. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA; London, UK: 1980. pp. 413–434. part C.

Borse T.H., Maheswarim V.L., Baviskar M.P. Effect of diphenyl carbazide on the metribuzin induced inhibition of photosystem-II photochemistry. J. Plant Biochem. Biotechnol. 2000;9:119–121. doi: 10.1007/BF03263097. DOI

Purcell M., Leroux G., Carpentier R. Interaction of the electron donor diphenylcarbazide with the herbicide-binding niche of photosystem II. Biochim. Biophys. Acta. 1991;1058:374–378. doi: 10.1016/S0005-2728(05)80133-1. DOI

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Otevrel J., Bobal P., Zadrazilova I., Govender R., Pesko M., Keltosova S., Koleckarova P., Marsalek P., Imramovsky A., Coffey A., et al. Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides. Molecules. 2013;18:10648–10670. doi: 10.3390/molecules180910648. PubMed DOI PMC

Kralova K., Sersen F., Miletin M., Dolezal M. Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chem. Pap. 2002;56:214–217.

Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC

Govindjee A. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI

Kralova K., Sersen F., Pesko M., Waisser K., Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides—Inhibitors of photosynthesis. Chem. Pap. 2014;68:46–52. doi: 10.2478/s11696-013-0416-7. DOI

Rupe H., Seiberth M., Kussmaul H. Stereoisomere Abkömmlinge des Aminomethylencamphers. Helv. Chim. Acta. 1920;3:50–70. doi: 10.1002/hlca.19200030106. DOI

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. NCCLS; Wayne, PA, USA: 2000. Approved Standard, 5th ed.; CLSI Document M7-A5.

National Committee for Clinical Laboratory Standards . Performance Standards for Antimicrobial Susceptibility Testing. NCCLS; Wayne, MI, USA: 2002. 12th Informational Supplement M100-S12.

Gonec T., Kos J., Nevin E., Govender R., Pesko M., Tengler J., Kushkevych I., Stastna V., Oravec M., Kollar P., et al. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides. Molecules. 2014;19:10386–10409. doi: 10.3390/molecules190710386. PubMed DOI PMC

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Newest 20 citations...

See more in
Medvik | PubMed

Towards Anticancer and Antibacterial Agents: Design and Synthesis of 1,2,3-Triazol-quinobenzothiazine Derivatives

. 2023 Aug 26 ; 24 (17) : . [epub] 20230826

Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides

. 2022 Nov 12 ; 27 (22) : . [epub] 20221112

Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates

. 2022 Jun 05 ; 15 (6) : . [epub] 20220605

Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides

. 2021 Jul 17 ; 26 (14) : . [epub] 20210717

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis

. 2020 May 12 ; 21 (10) : . [epub] 20200512

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †

. 2018 Jul 04 ; 23 (7) : . [epub] 20180704

Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

. 2017 Oct 12 ; 22 (10) : . [epub] 20171012

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

The Structure-Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold

. 2016 Sep 26 ; 21 (10) : . [epub] 20160926

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity

. 2016 Aug 16 ; 21 (8) : . [epub] 20160816

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...