Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania

. 2016 Mar 29 ; 6 () : 23704. [epub] 20160329

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27021793

Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.

Zobrazit více v PubMed

Lukeš J., Skalický T., Týč J., Votýpka J. & Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195, 115–122 (2014). PubMed

Maslov D. A., Votýpka J., Yurchenko V. & Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29, 43–52 (2013). PubMed

Votýpka J. et al.. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163, 616–631 (2012). PubMed

McGhee R. B. & Cosgrove W. B. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 44, 140–173 (1980). PubMed PMC

Jirků M., Yurchenko V. Y., Lukeš J. & Maslov D. A. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 59, 537–547 (2012). PubMed

De Sa M. F., De Sa C. M., Veronese M. A., Filho S. A. & Gander E. S. Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool 27, 253–257 (1980). PubMed

Roitman I., Mundim M. H., De Azevedo H. P. & Kitajima E. W. Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool 24, 553–556 (1977).

Kraeva N. et al.. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog 11, e1005127 (2015). PubMed PMC

Ferreira M. S. & Borges A. S. Some aspects of protozoan infections in immunocompromised patients - a review. Mem Inst Oswaldo Cruz 97, 443–457 (2002). PubMed

Dedet J. P. & Pratlong F. Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J Eukaryot Microbiol. 47, 37–39 (2000). PubMed

Rosenthal E. et al.. HIV and Leishmania coinfection: a review of 91 cases with focus on atypical locations of Leishmania. Clin Infect Dis. 31, 1093–1095 (2000). PubMed

del Campo J. et al.. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 29, 252–259 (2014). PubMed PMC

Votýpka J. et al.. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol 31, 460–469 (2015). PubMed

Cantacessi C., Dantas-Torres F., Nolan M. J. & Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 31, 100–108 (2015). PubMed PMC

Jackson A. P. Genome evolution in trypanosomatid parasites. Parasitology 142 Suppl 1, S40–56 (2015). PubMed PMC

Real F. et al.. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 20, 567–581 (2013). PubMed PMC

Peacock C. S. et al.. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39, 839–847 (2007). PubMed PMC

Sistrom M. et al.. Comparative genomics reveals multiple genetic backgrounds of human pathogenicity in the Trypanosoma brucei complex. Genome Biol Evol 6, 2811–2819 (2014). PubMed PMC

Gibson W. The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000. Parasit Vectors 5, 71 (2012). PubMed PMC

Greif G. et al.. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genomics 14, 149 (2013). PubMed PMC

Myler P. J. In Leishmania: after the genome (eds P. J. Myler & N. Fasel) Ch. 2, 15–28 (Caister Academic Press, 2008).

Runckel C., DeRisi J. & Flenniken M. L. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One 9, e95057 (2014). PubMed PMC

Motta M. C. et al.. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 8, e60209 (2013). PubMed PMC

Aslett M. et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38, D457–462 (2010). PubMed PMC

Singh N., Chikara S. & Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLOS One 8, e55738 (2013). PubMed PMC

Alves J. M. et al.. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13, 190 (2013). PubMed PMC

Tibayrenc M. & Ayala F. J. How clonal are Trypanosoma and Leishmania? Trends Parasitol 29, 264–269 (2013). PubMed

Tibayrenc M. & Ayala F. J. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci. USA 109, E3305–3313 (2012). PubMed PMC

Akopyants N. S. et al.. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324, 265–268 (2009). PubMed PMC

Sádlová J. et al.. Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector. PLoS One 6, e19851 (2011). PubMed PMC

Ramirez J. D. et al.. Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol 21, 4216–4226 (2012). PubMed

Rogers M. B. et al.. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 10, e1004092 (2014). PubMed PMC

Volf P. et al.. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int J Parasitol 37, 589–593 (2007). PubMed PMC

Popp M., Erler S. & Lattorff H. M. Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.). MicrobiologyOpen 1, 362–372 (2012). PubMed PMC

Votýpka J., Ray D. S. & Lukeš J. Crithidia fasciculata: a test for genetic exchange. Exp Parasitol 99, 104–107 (2001). PubMed

Cisarovsky G. & Schmid-Hempel P. Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi. Infect Genet Evol 21, 192–197 (2014). PubMed

Schmid-Hempel R., Salathe R., Tognazzo M. & Schmid-Hempel P. Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. Infect Genet Evol 11, 564–571 (2011). PubMed

Tognazzo M., Schmid-Hempel R. & Schmid-Hempel P. Probing mixed-genotype infections II: high multiplicity in natural infections of the trypanosomatid, Crithidia bombi, in its host, Bombus spp. PLoS One 7, e49137 (2012). PubMed PMC

Porcel B. M. et al.. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLOS Genet 10, e1004007 (2014). PubMed PMC

Campbell D. A., Thomas S. & Sturm N. R. Transcription in kinetoplastid protozoa: why be normal? Microbes Infect 5, 1231–1240 (2003). PubMed

Leroux A. E., Maugeri D. A., Cazzulo J. J. & Nowicki C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol Biochem Parasitol 177, 61–64 (2011). PubMed

Csuros M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010). PubMed

Jackson A. P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol Biol Evol 27, 33–45 (2010). PubMed PMC

McCall L. I. & McKerrow J. H. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol 30, 342–349 (2014). PubMed

Sachidanandam R. et al.. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001). PubMed

Clark R. M. et al.. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007). PubMed

McVean G., Awadalla P. & Fearnhead P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002). PubMed PMC

Ning J. et al.. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 27, 1198–1215 (2013). PubMed PMC

Wong J. L. & Johnson M. A. Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol 20, 134–141 (2010). PubMed

Rogers M. B. et al.. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21, 2129–2142 (2011). PubMed PMC

Sterkers Y., Lachaud L., Crobu L., Bastien P. & Pages M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol 13, 274–283 (2011). PubMed

Reis-Cunha J. L. et al.. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 16, 499 (2015). PubMed PMC

Anisimova M., Nielsen R. & Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164, 1229–1236 (2003). PubMed PMC

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24, 1586–1591 (2007). PubMed

Langousis G. & Hill K. L. Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12, 505–518 (2014). PubMed PMC

Bringaud F., Ghedin E., El-Sayed N. M. & Papadopoulou B. Role of transposable elements in trypanosomatids. Microbes Infect 10, 575–581 (2008). PubMed

Tanifuji G. et al.. Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryot Cell 10, 1143–1146 (2011). PubMed PMC

Berriman M. et al.. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005). PubMed

El-Sayed N. M. et al.. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415 (2005). PubMed

Ivens A. C. et al.. The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436–442 (2005). PubMed PMC

Jackson A. P. et al.. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol 26, 161–172 (2016). PubMed PMC

Choi J. & El-Sayed N. M. Functional genomics of trypanosomatids. Parasite Immunol 34, 72–79 (2012). PubMed

Woo Y. H. et al.. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4, e06974 (2015). PubMed PMC

Wolf Y. I. & Koonin E. V. Genome reduction as the dominant mode of evolution. Bioessays 35, 829–837 (2013). PubMed PMC

Opperdoes F. & Michels P. A. In Leishmania: after the genome (eds , Myler P. & Fasel N.) Ch. 7, 123–158 (Caister Academic Press, 2008).

Lee S. H., Stephens J. L. & Englund P. T. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5, 287–297 (2007). PubMed

Kamhawi S. et al.. A role for insect galectins in parasite survival. Cell 119, 329–341 (2004). PubMed

Dostálová A. & Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5, 276 (2012). PubMed PMC

Field M. C. Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends Parasitol 21, 447–450 (2005). PubMed

Votýpka J. et al.. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165, 825–838 (2014). PubMed

Hamilton P. T. et al.. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio 6, e01356–01315 (2015). PubMed PMC

Popp M. & Lattorff H. M. A quantitative in vitro cultivation technique to determine cell number and growth rates in strains of Crithidia bombi (Trypanosomatidae), a parasite of bumblebees. J Eukaryot Microbiol 58, 7–10 (2011). PubMed

Maslov D. A., Yurchenko V. Y., Jirků M. & Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57, 177–188 (2010). PubMed

Maslov D. A., Westenberger S. J., Xu X., Campbell D. A. & Sturm N. R. Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54, 57–65 (2007). PubMed

Westenberger S. J. et al.. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129, 537–547 (2004). PubMed

Li L., Stoeckert C. J. Jr. & Roos D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189 (2003). PubMed PMC

Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004). PubMed PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC

Conesa A. et al.. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005). PubMed

Rimmer A. et al.. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46, 912–918 (2014). PubMed PMC

Yang Z., Wong W. S. & Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22, 1107–1118 (2005). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim

. 2025 Jan 08 ; 15 (1) : .

Parasites of firebugs in Austria with focus on the "micro"-diversity of the cosmopolitan trypanosomatid Leptomonas pyrrhocoris

. 2023 Dec 11 ; 123 (1) : 27. [epub] 20231211

Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris

. 2023 Sep 12 ; 21 (1) : 191. [epub] 20230912

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

Functional differentiation of Sec13 paralogues in the euglenozoan protists

. 2023 Jun ; 13 (6) : 220364. [epub] 20230614

Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content

. 2022 Jun ; 16 (6) : e0010510. [epub] 20220624

Catalase impairs Leishmania mexicana development and virulence

. 2021 Dec ; 12 (1) : 852-867.

Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum

. 2021 Nov 24 ; 19 (1) : 251. [epub] 20211124

Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?

. 2021 Sep 02 ; 10 (9) : . [epub] 20210902

A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its "Candidatus Pandoraea novymonadis" Endosymbiont

. 2021 Aug 31 ; 12 (4) : e0160621. [epub] 20210817

Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events

. 2021 Apr 06 ; 49 (6) : 3354-3370.

Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity

. 2021 Mar 20 ; 12 (3) : . [epub] 20210320

Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources

. 2020 ; 15 (3) : e0230537. [epub] 20200324

Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids

. 2020 Mar 02 ; 18 (1) : 23. [epub] 20200302

Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae

. 2020 Feb 05 ; 9 (2) : . [epub] 20200205

The First Non-LRV RNA Virus in Leishmania

. 2020 Feb 02 ; 12 (2) : . [epub] 20200202

If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus

. 2020 ; 15 (1) : e0227832. [epub] 20200116

Cell Cycle-Dependent Flagellar Disassembly in a Firebug Trypanosomatid Leptomonas pyrrhocoris

. 2019 Nov 26 ; 10 (6) : . [epub] 20191126

LmxM.22.0250-Encoded Dual Specificity Protein/Lipid Phosphatase Impairs Leishmania mexicana Virulence In Vitro

. 2019 Nov 17 ; 8 (4) : . [epub] 20191117

Comparative genomics of Leishmania (Mundinia)

. 2019 Oct 11 ; 20 (1) : 726. [epub] 20191011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...