Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27021793
PubMed Central
PMC4810370
DOI
10.1038/srep23704
PII: srep23704
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- energetický metabolismus genetika MeSH
- fylogeneze MeSH
- genom protozoální genetika MeSH
- genová ontologie MeSH
- Leishmania klasifikace genetika patogenita MeSH
- molekulární evoluce * MeSH
- protozoální geny genetika MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosomatina klasifikace genetika patogenita MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
Canadian Institute for Advanced Research Toronto ON M5G 1Z8 Canada
Department of Biology M 5 Lomonosov Moscow State University 119991 Moscow Russia
Department of Biology; University of California at Riverside Riverside 92521 CA USA
Department of Parasitology Faculty of Science Charles University 128 44 Prague Czech Republic
Department of Plant Sciences University of Oxford Oxford OX1 3RB UK
e Duve Institute Université Catholique de Louvain 1200 Brussels Belgium
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Institute for Information Transmission Problems Russian Academy of Sciences 127051 Moscow Russia
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
School of Life Sciences University of Dundee Dundee DD1 5EH UK
Zobrazit více v PubMed
Lukeš J., Skalický T., Týč J., Votýpka J. & Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195, 115–122 (2014). PubMed
Maslov D. A., Votýpka J., Yurchenko V. & Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29, 43–52 (2013). PubMed
Votýpka J. et al.. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163, 616–631 (2012). PubMed
McGhee R. B. & Cosgrove W. B. Biology and physiology of the lower Trypanosomatidae. Microbiol Rev. 44, 140–173 (1980). PubMed PMC
Jirků M., Yurchenko V. Y., Lukeš J. & Maslov D. A. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 59, 537–547 (2012). PubMed
De Sa M. F., De Sa C. M., Veronese M. A., Filho S. A. & Gander E. S. Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool 27, 253–257 (1980). PubMed
Roitman I., Mundim M. H., De Azevedo H. P. & Kitajima E. W. Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool 24, 553–556 (1977).
Kraeva N. et al.. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog 11, e1005127 (2015). PubMed PMC
Ferreira M. S. & Borges A. S. Some aspects of protozoan infections in immunocompromised patients - a review. Mem Inst Oswaldo Cruz 97, 443–457 (2002). PubMed
Dedet J. P. & Pratlong F. Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J Eukaryot Microbiol. 47, 37–39 (2000). PubMed
Rosenthal E. et al.. HIV and Leishmania coinfection: a review of 91 cases with focus on atypical locations of Leishmania. Clin Infect Dis. 31, 1093–1095 (2000). PubMed
del Campo J. et al.. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 29, 252–259 (2014). PubMed PMC
Votýpka J. et al.. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol 31, 460–469 (2015). PubMed
Cantacessi C., Dantas-Torres F., Nolan M. J. & Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 31, 100–108 (2015). PubMed PMC
Jackson A. P. Genome evolution in trypanosomatid parasites. Parasitology 142 Suppl 1, S40–56 (2015). PubMed PMC
Real F. et al.. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 20, 567–581 (2013). PubMed PMC
Peacock C. S. et al.. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39, 839–847 (2007). PubMed PMC
Sistrom M. et al.. Comparative genomics reveals multiple genetic backgrounds of human pathogenicity in the Trypanosoma brucei complex. Genome Biol Evol 6, 2811–2819 (2014). PubMed PMC
Gibson W. The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000. Parasit Vectors 5, 71 (2012). PubMed PMC
Greif G. et al.. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genomics 14, 149 (2013). PubMed PMC
Myler P. J. In Leishmania: after the genome (eds P. J. Myler & N. Fasel) Ch. 2, 15–28 (Caister Academic Press, 2008).
Runckel C., DeRisi J. & Flenniken M. L. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One 9, e95057 (2014). PubMed PMC
Motta M. C. et al.. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 8, e60209 (2013). PubMed PMC
Aslett M. et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38, D457–462 (2010). PubMed PMC
Singh N., Chikara S. & Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLOS One 8, e55738 (2013). PubMed PMC
Alves J. M. et al.. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13, 190 (2013). PubMed PMC
Tibayrenc M. & Ayala F. J. How clonal are Trypanosoma and Leishmania? Trends Parasitol 29, 264–269 (2013). PubMed
Tibayrenc M. & Ayala F. J. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci. USA 109, E3305–3313 (2012). PubMed PMC
Akopyants N. S. et al.. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324, 265–268 (2009). PubMed PMC
Sádlová J. et al.. Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector. PLoS One 6, e19851 (2011). PubMed PMC
Ramirez J. D. et al.. Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol 21, 4216–4226 (2012). PubMed
Rogers M. B. et al.. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 10, e1004092 (2014). PubMed PMC
Volf P. et al.. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int J Parasitol 37, 589–593 (2007). PubMed PMC
Popp M., Erler S. & Lattorff H. M. Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.). MicrobiologyOpen 1, 362–372 (2012). PubMed PMC
Votýpka J., Ray D. S. & Lukeš J. Crithidia fasciculata: a test for genetic exchange. Exp Parasitol 99, 104–107 (2001). PubMed
Cisarovsky G. & Schmid-Hempel P. Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi. Infect Genet Evol 21, 192–197 (2014). PubMed
Schmid-Hempel R., Salathe R., Tognazzo M. & Schmid-Hempel P. Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. Infect Genet Evol 11, 564–571 (2011). PubMed
Tognazzo M., Schmid-Hempel R. & Schmid-Hempel P. Probing mixed-genotype infections II: high multiplicity in natural infections of the trypanosomatid, Crithidia bombi, in its host, Bombus spp. PLoS One 7, e49137 (2012). PubMed PMC
Porcel B. M. et al.. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLOS Genet 10, e1004007 (2014). PubMed PMC
Campbell D. A., Thomas S. & Sturm N. R. Transcription in kinetoplastid protozoa: why be normal? Microbes Infect 5, 1231–1240 (2003). PubMed
Leroux A. E., Maugeri D. A., Cazzulo J. J. & Nowicki C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol Biochem Parasitol 177, 61–64 (2011). PubMed
Csuros M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010). PubMed
Jackson A. P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol Biol Evol 27, 33–45 (2010). PubMed PMC
McCall L. I. & McKerrow J. H. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol 30, 342–349 (2014). PubMed
Sachidanandam R. et al.. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001). PubMed
Clark R. M. et al.. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007). PubMed
McVean G., Awadalla P. & Fearnhead P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002). PubMed PMC
Ning J. et al.. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 27, 1198–1215 (2013). PubMed PMC
Wong J. L. & Johnson M. A. Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol 20, 134–141 (2010). PubMed
Rogers M. B. et al.. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21, 2129–2142 (2011). PubMed PMC
Sterkers Y., Lachaud L., Crobu L., Bastien P. & Pages M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol 13, 274–283 (2011). PubMed
Reis-Cunha J. L. et al.. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 16, 499 (2015). PubMed PMC
Anisimova M., Nielsen R. & Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164, 1229–1236 (2003). PubMed PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24, 1586–1591 (2007). PubMed
Langousis G. & Hill K. L. Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12, 505–518 (2014). PubMed PMC
Bringaud F., Ghedin E., El-Sayed N. M. & Papadopoulou B. Role of transposable elements in trypanosomatids. Microbes Infect 10, 575–581 (2008). PubMed
Tanifuji G. et al.. Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryot Cell 10, 1143–1146 (2011). PubMed PMC
Berriman M. et al.. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005). PubMed
El-Sayed N. M. et al.. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415 (2005). PubMed
Ivens A. C. et al.. The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436–442 (2005). PubMed PMC
Jackson A. P. et al.. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol 26, 161–172 (2016). PubMed PMC
Choi J. & El-Sayed N. M. Functional genomics of trypanosomatids. Parasite Immunol 34, 72–79 (2012). PubMed
Woo Y. H. et al.. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4, e06974 (2015). PubMed PMC
Wolf Y. I. & Koonin E. V. Genome reduction as the dominant mode of evolution. Bioessays 35, 829–837 (2013). PubMed PMC
Opperdoes F. & Michels P. A. In Leishmania: after the genome (eds , Myler P. & Fasel N.) Ch. 7, 123–158 (Caister Academic Press, 2008).
Lee S. H., Stephens J. L. & Englund P. T. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5, 287–297 (2007). PubMed
Kamhawi S. et al.. A role for insect galectins in parasite survival. Cell 119, 329–341 (2004). PubMed
Dostálová A. & Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5, 276 (2012). PubMed PMC
Field M. C. Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends Parasitol 21, 447–450 (2005). PubMed
Votýpka J. et al.. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165, 825–838 (2014). PubMed
Hamilton P. T. et al.. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. MBio 6, e01356–01315 (2015). PubMed PMC
Popp M. & Lattorff H. M. A quantitative in vitro cultivation technique to determine cell number and growth rates in strains of Crithidia bombi (Trypanosomatidae), a parasite of bumblebees. J Eukaryot Microbiol 58, 7–10 (2011). PubMed
Maslov D. A., Yurchenko V. Y., Jirků M. & Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57, 177–188 (2010). PubMed
Maslov D. A., Westenberger S. J., Xu X., Campbell D. A. & Sturm N. R. Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54, 57–65 (2007). PubMed
Westenberger S. J. et al.. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129, 537–547 (2004). PubMed
Li L., Stoeckert C. J. Jr. & Roos D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189 (2003). PubMed PMC
Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004). PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Conesa A. et al.. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005). PubMed
Rimmer A. et al.. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46, 912–918 (2014). PubMed PMC
Yang Z., Wong W. S. & Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22, 1107–1118 (2005). PubMed
Somy evolution in the honey bee infecting trypanosomatid parasite Lotmaria passim
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Functional differentiation of Sec13 paralogues in the euglenozoan protists
Catalase impairs Leishmania mexicana development and virulence
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae
The First Non-LRV RNA Virus in Leishmania
Cell Cycle-Dependent Flagellar Disassembly in a Firebug Trypanosomatid Leptomonas pyrrhocoris