Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27646192
PubMed Central
PMC5028950
DOI
10.1186/s12866-016-0835-z
PII: 10.1186/s12866-016-0835-z
Knihovny.cz E-resources
- Keywords
- Bacteriocinogeny, Colicin, Escherichia coli, ExPEC, Microcin, Virulence factor,
- MeSH
- Genes, Bacterial MeSH
- Bacteriocins classification genetics metabolism MeSH
- Child MeSH
- DNA, Bacterial genetics MeSH
- Adult MeSH
- Respiratory System microbiology MeSH
- Extraintestinal Pathogenic Escherichia coli genetics isolation & purification metabolism pathogenicity MeSH
- Virulence Factors genetics metabolism MeSH
- Feces microbiology MeSH
- Phylogeny * MeSH
- Gastrointestinal Tract microbiology MeSH
- Reproductive Tract Infections microbiology MeSH
- Escherichia coli Infections microbiology MeSH
- Infant MeSH
- Colicins metabolism MeSH
- Skin microbiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Child, Preschool MeSH
- Prevalence * MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Bacteriocins MeSH
- DNA, Bacterial MeSH
- Virulence Factors MeSH
- Colicins MeSH
- microcin MeSH Browser
BACKGROUND: The study used a set of 407 human extraintestinal pathogenic E. coli strains (ExPEC) isolated from (1) skin and soft tissue infections, (2) respiratory infections, (3) intra-abdominal infections, and (4) genital smears. The set was tested for bacteriocin production, for prevalence of bacteriocin and virulence determinants, and for phylogenetic typing. Results obtained from the group of ExPEC strains were compared to data from our previously published analyses of 1283 fecal commensal E. coli strains. RESULTS: The frequency of bacteriocinogeny was significantly higher in the set of ExPEC strains (63.1 %), compared to fecal E. coli (54.2 %; p < 0.01). Microcin producers and microcin determinants dominated in ExPEC strains, while colicin producers and colicin determinants were more frequent in fecal E. coli (p < 0.01). Higher production of microcin M and lower production of microcin B17, colicin Ib, and Js was detected in the set of ExPEC strains. ExPEC strains had a significantly higher prevalence of phylogenetic group B2 (52.6 %) compared to fecal E. coli strains (38.3 %; p < 0.01). CONCLUSIONS: Human ExPEC strains were shown to differ from human fecal strains in a number of parameters including bacteriocin production, prevalence of several bacteriocin and virulence determinants, and prevalence of phylogenetic groups. Differences in these parameters were also identified within subgroups of ExPEC strains of diverse origin. While some microcin determinants (mM, mH47) were associated with virulent strains, other bacteriocin types (mB17, Ib, and Js) were associated with fecal flora.
See more in PubMed
Orskov I, Orskov F. Escherichia coli in extra-intestinal infections. J Hyg (Lond) 1985;95:551–75. doi: 10.1017/S0022172400060678. PubMed DOI PMC
Eisenstein BI, Jones GW. The spectrum of infections and pathogenic mechanisms of Escherichia coli. Adv Intern Med. 1988;33:231–52. PubMed
Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol. 2008;190:6881–93. doi: 10.1128/JB.00619-08. PubMed DOI PMC
Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli”. J Lab Clin Med. 2002;139:155–62. doi: 10.1067/mlc.2002.121550. PubMed DOI
Leffler H, Svanborg-Edén C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun. 1981;34:920–9. PubMed PMC
Mulvey MA. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 2002;4:257–71. doi: 10.1046/j.1462-5822.2002.00193.x. PubMed DOI
Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991;4:80–128. doi: 10.1128/CMR.4.1.80. PubMed DOI PMC
Šmarda J, Šmajs D. Colicins - exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 1998;43:563–82. doi: 10.1007/BF02816372. PubMed DOI
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev MMBR. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC
Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog. 2009;47:274–80. doi: 10.1016/j.micpath.2009.09.003. PubMed DOI
Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z, Woznicová V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. 2010;10:288. doi: 10.1186/1471-2180-10-288. PubMed DOI PMC
Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One. 2011;6:e28769. doi: 10.1371/journal.pone.0028769. PubMed DOI PMC
Šmajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol. 2001;183:3949–57. doi: 10.1128/JB.183.13.3949-3957.2001. PubMed DOI PMC
Šmajs D, Weinstock GM. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J Bacteriol. 2001;183:3958–66. doi: 10.1128/JB.183.13.3958-3966.2001. PubMed DOI PMC
Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–33. doi: 10.1016/S0966-842X(99)01459-6. PubMed DOI
Cornut G, Fortin C, Soulières D. Antineoplastic properties of bacteriocins: revisiting potential active agents. Am J Clin Oncol. 2008;31:399–404. doi: 10.1097/COC.0b013e31815e456d. PubMed DOI
Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, Ševčíková A, Woznicová V, Šmajs D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol. 2014;14:109. doi: 10.1186/1471-2180-14-109. PubMed DOI PMC
Davies DL, Falkiner FR, Hardy KG. Colicin V production by clinical isolates of Escherichia coli. Infect Immun. 1981;31:574–9. PubMed PMC
Kohoutová D, Šmajs D, Moravková P, Cyrany J, Moravková M, Forstlová M, Čihák M, Rejchrt S, Bureš J. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014;14:733. doi: 10.1186/s12879-014-0733-7. PubMed DOI PMC
Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V, Vrba M, Ševčíková A, Bureš J, Šmajs D. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiol Open. 2016 PubMed PMC
Mokady D, Gophna U, Ron EZ. Virulence factors of septicemic Escherichia coli strains. Int J Med Microbiol. 2005;295:455–62. doi: 10.1016/j.ijmm.2005.07.007. PubMed DOI
Petkovsek Z, Elersic K, Gubina M, Zgur-Bertok D, Starcic Erjavec M. Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J Clin Microbiol. 2009;47:1811–7. doi: 10.1128/JCM.01421-08. PubMed DOI PMC
Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011;301:642–7. doi: 10.1016/j.ijmm.2011.09.006. PubMed DOI
Fakruddin M, Mazumdar RM, Chowdhury A, Mannan KS. A preliminary study on virulence factors & antimicrobial resistance in extra-intestinal pathogenic Escherichia coli (ExPEC) in Bangladesh. Indian J Med Res. 2013;137:988–90. PubMed PMC
Koga VL, Tomazetto G, Cyoia PS, Neves MS, Vidotto MC, Nakazato G, Kobayashi RK. Molecular screening of virulence genes in extraintestinal pathogenic Escherichia coli isolated from human blood culture in Brazil. Biomed Res Int. 2014;2014:465054. doi: 10.1155/2014/465054. PubMed DOI PMC
Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67:546–53. PubMed PMC
Santos AC, Zidko AC, Pignatari AC, Silva RM. Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz J Med Biol Res. 2013;46:968–73. doi: 10.1590/1414-431X20133184. PubMed DOI PMC
Mirzarazi M, Rezatofighi SE, Pourmahdi M, Mohajeri MR. Occurrence of genes encoding enterotoxins in uropathogenic Escherichia coli isolates. Braz J Microbiol. 2015;46:155–9. doi: 10.1590/S1517-838246120130860. PubMed DOI PMC
Chakraborty A, Saralaya V, Adhikari P, Shenoy S, Baliga S, Hegde A. Characterization of Escherichia coli Phylogenetic Groups Associated with Extraintestinal Infections in South Indian Population. Indian J Pathol Microbiol. 2014;57:255–8. doi: 10.4103/0377-4929.134700. PubMed DOI PMC
Waters VL, Crosa JH. Colicin V virulence plasmids. Microbiol Rev. 1991;55:437–50. PubMed PMC
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 2007;24:708–34. doi: 10.1039/b516237h. PubMed DOI
Jeziorowski A, Gordon DM. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol. 2007;189:7045–52. doi: 10.1128/JB.00243-07. PubMed DOI PMC
Šmajs D, Strouhal M, Matějková P, Čejková D, Cursino L, Chartone-Souza E, Šmarda J, Nascimento AM. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid. 2008;59:1–10. doi: 10.1016/j.plasmid.2007.08.002. PubMed DOI
Gordon DM, O’Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology. 2006;152:3239–44. doi: 10.1099/mic.0.28690-0. PubMed DOI
Nielsen KL, Dynesen P, Larsen P, Frimodt-Møller N. Faecal Escherichia coli from patients with E. coli urinary tract infection and healthy controls who have never had a urinary tract infection. J Med Microbiol. 2014;63:582–9. doi: 10.1099/jmm.0.068783-0. PubMed DOI
Moreno E, Andreu A, Pigrau C, Kuskowski MA, Johnson JR, Prats G. Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J Clin Microbiol. 2008;46:2529–34. doi: 10.1128/JCM.00813-08. PubMed DOI PMC
Micenková L, Šišková P, Bosák J, Jamborová I, Černohorská L, Šmajs D. Characterization of human uropathogenic ESBL-producing Escherichia coli in the Czech Republic: spread of CTX-M-27-producing strains in a university hospital. Microb Drug Resist. 2014;20:610–7. doi: 10.1089/mdr.2014.0013. PubMed DOI
Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology (Reading, Engl) 2003;149:2557–70. doi: 10.1099/mic.0.26396-0. PubMed DOI
Martínez JL, Herrero M, de Lorenzo V. The organization of intercistronic regions of the aerobactin operon of pColV-K30 may account for the differential expression of the iucABCD iutA genes. J Mol Biol. 1994;238:288–93. doi: 10.1006/jmbi.1994.1290. PubMed DOI
Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H. Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol. 1995;33:701–5. PubMed PMC
Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol. 1995;12:85–90. doi: 10.1111/j.1574-695X.1995.tb00179.x. PubMed DOI
Kuhnert P, Hacker J, Mühldorfer I, Burnens AP, Nicolet J, Frey J. Detection system for Escherichia coli-specific virulence genes: absence of virulence determinants in B and C strains. Appl Environ Microbiol. 1997;63:703–9. PubMed PMC
Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602. PubMed PMC
Paciorek J. Virulence properties of Escherichia coli faecal strains isolated in Poland from healthy children and strains belonging to serogroups O18, O26, O44, O86, O126 and O127 isolated from children with diarrhoea. J Med Microbiol. 2002;51:548–56. doi: 10.1099/0022-1317-51-7-548. PubMed DOI
López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerging Infect Dis. 2003;9:127–31. doi: 10.3201/eid0901.010507. PubMed DOI PMC
Bírošová E, Siegfried L, Kmeťová M, Makara A, Ostró A, Gresová A, Urdzík P, Liptáková A, Molokácová M, Bártl R, Valanský L. Detection of virulence factors in alpha-haemolytic Escherichia coli strains isolated from various clinical materials. Clin Microbiol Infect. 2004;10:569–73. doi: 10.1111/j.1469-0691.2004.00922.x. PubMed DOI
Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–8. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC
Colicin U from Shigella boydii Forms Voltage-Dependent Pores
Colicin FY inhibits pathogenic Yersinia enterocolitica in mice