BACKGROUND: Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have clinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches. METHODS: Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status. RESULTS: Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset. At an optimal cut-point of probability-score = 0.335, sensitivity = 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients. CONCLUSIONS: We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC. IMPACT: The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
- MeSH
- analýza přežití MeSH
- erbB receptory genetika MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * epidemiologie genetika MeSH
- nemalobuněčný karcinom plic * epidemiologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Epidemiological studies have suggested positive associations for iron and red meat intake with risk of pancreatic ductal adenocarcinoma (PDAC). Inherited pathogenic variants in genes involved in the hepcidin-regulating iron metabolism pathway are known to cause iron overload and hemochromatosis. OBJECTIVES: The objective of this study was to determine whether common genetic variation in the hepcidin-regulating iron metabolism pathway is associated with PDAC. METHODS: We conducted a pathway analysis of the hepcidin-regulating genes using single nucleotide polymorphism (SNP) summary statistics generated from 4 genome-wide association studies in 2 large consortium studies using the summary data-based adaptive rank truncated product method. Our population consisted of 9253 PDAC cases and 12,525 controls of European descent. Our analysis included 11 hepcidin-regulating genes [bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 6 (BMP6), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), hepcidin (HAMP), homeostatic iron regulator (HFE), hemojuvelin (HJV), nuclear factor erythroid 2-related factor 2 (NRF2), ferroportin 1 (SLC40A1), transferrin receptor 1 (TFR1), and transferrin receptor 2 (TFR2)] and their surrounding genomic regions (±20 kb) for a total of 412 SNPs. RESULTS: The hepcidin-regulating gene pathway was significantly associated with PDAC (P = 0.002), with the HJV, TFR2, TFR1, BMP6, and HAMP genes contributing the most to the association. CONCLUSIONS: Our results support that genetic susceptibility related to the hepcidin-regulating gene pathway is associated with PDAC risk and suggest a potential role of iron metabolism in pancreatic carcinogenesis. Further studies are needed to evaluate effect modification by intake of iron-rich foods on this association.
- MeSH
- adenokarcinom metabolismus MeSH
- genotyp MeSH
- hepcidiny genetika metabolismus MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory slinivky břišní metabolismus MeSH
- regulace genové exprese u nádorů fyziologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha MeSH
- železo metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: The association among gallbladder disease, cholecystectomy, and pancreatic cancer is unclear. Moreover, time interval between gallbladder disease or cholecystectomy and pancreatic cancer diagnosis is not considered in most previous studies. AIM: To quantify the association among gallbladder disease, cholecystectomy, and pancreatic cancer, considering time since first diagnosis of gallbladder disease or cholecystectomy. METHODS: We used data from nine case-control studies within the Pancreatic Cancer Case-Control Consortium, including 5760 cases of adenocarcinoma of the exocrine pancreas and 8437 controls. We estimated pooled odds ratios and the corresponding 95% confidence intervals by estimating study-specific odds ratios through multivariable unconditional logistic regression models, and then pooling the obtained estimates using fixed-effects models. RESULTS: Compared with patients with no history of gallbladder disease, the pooled odds ratio of pancreatic cancer was 1.69 (95% confidence interval, 1.51-1.88) for patients reporting a history of gallbladder disease. The odds ratio was 4.90 (95% confidence interval, 3.45-6.97) for gallbladder disease diagnosed <2 years before pancreatic cancer diagnosis and 1.11 (95% confidence interval, 0.96-1.29) when ≥2 years elapsed. The pooled odds ratio was 1.64 (95% confidence interval, 1.43-1.89) for patients who underwent cholecystectomy, as compared to those without cholecystectomy. The odds ratio was 7.00 (95% confidence interval, 4.13-11.86) for a surgery <2 years before pancreatic cancer diagnosis and 1.28 (95% confidence interval, 1.08-1.53) for a surgery ≥2 years before. CONCLUSIONS: There appears to be no long-term effect of gallbladder disease on pancreatic cancer risk, and at most a modest one for cholecystectomy. The strong short-term association can be explained by diagnostic bias and reverse causation.
- MeSH
- cholecystektomie škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezinárodní agentury MeSH
- nádory slinivky břišní etiologie patologie MeSH
- nemoci žlučníku patologie chirurgie MeSH
- prognóza MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Evidence from observational studies of telomere length (TL) has been conflicting regarding its direction of association with cancer risk. We investigated the causal relevance of TL for lung and head and neck cancers using Mendelian Randomization (MR) and mediation analyses. METHODS: We developed a novel genetic instrument for TL in chromosome 5p15.33, using variants identified through deep-sequencing, that were genotyped in 2051 cancer-free subjects. Next, we conducted an MR analysis of lung (16 396 cases, 13 013 controls) and head and neck cancer (4415 cases, 5013 controls) using eight genetic instruments for TL. Lastly, the 5p15.33 instrument and distinct 5p15.33 lung cancer risk loci were evaluated using two-sample mediation analysis, to quantify their direct and indirect, telomere-mediated, effects. RESULTS: The multi-allelic 5p15.33 instrument explained 1.49-2.00% of TL variation in our data (p = 2.6 × 10-9). The MR analysis estimated that a 1000 base-pair increase in TL increases risk of lung cancer [odds ratio (OR) = 1.41, 95% confidence interval (CI): 1.20-1.65] and lung adenocarcinoma (OR = 1.92, 95% CI: 1.51-2.22), but not squamous lung carcinoma (OR = 1.04, 95% CI: 0.83-1.29) or head and neck cancers (OR = 0.90, 95% CI: 0.70-1.05). Mediation analysis of the 5p15.33 instrument indicated an absence of direct effects on lung cancer risk (OR = 1.00, 95% CI: 0.95-1.04). Analysis of distinct 5p15.33 susceptibility variants estimated that TL mediates up to 40% of the observed associations with lung cancer risk. CONCLUSIONS: Our findings support a causal role for long telomeres in lung cancer aetiology, particularly for adenocarcinoma, and demonstrate that telomere maintenance partially mediates the lung cancer susceptibility conferred by 5p15.33 loci.
- MeSH
- adenokarcinom plic epidemiologie MeSH
- dlaždicobuněčné karcinomy hlavy a krku epidemiologie MeSH
- homeostáza telomer genetika MeSH
- leukocyty metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 5 genetika MeSH
- mendelovská randomizace MeSH
- nádory hlavy a krku epidemiologie MeSH
- nádory plic epidemiologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spinocelulární karcinom epidemiologie MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
- MeSH
- celogenomová asociační studie metody MeSH
- duktální karcinom pankreatu genetika MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nádory slinivky břišní genetika MeSH
- statistické modely MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
- MeSH
- deoxyribonukleasa I metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- nádory plic genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes.
- Publikační typ
- časopisecké články MeSH
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
- MeSH
- dítě MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genová ontologie MeSH
- genové regulační sítě MeSH
- jednonukleotidový polymorfismus MeSH
- kohortové studie MeSH
- kojenec MeSH
- kouření škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 15 genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory plic genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- reprodukovatelnost výsledků MeSH
- rizikové faktory MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
- MeSH
- celogenomová asociační studie MeSH
- databáze genetické MeSH
- duktální karcinom pankreatu genetika MeSH
- genetická predispozice k nemoci MeSH
- hepatocytární jaderný faktor 1-beta genetika MeSH
- hepatocytární jaderný faktor 4 genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nádory slinivky břišní genetika MeSH
- proteiny genetika MeSH
- represorové proteiny genetika MeSH
- tensiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
- MeSH
- běloši MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci genetika MeSH
- genotyp MeSH
- interakce genů a prostředí MeSH
- jednonukleotidový polymorfismus MeSH
- kouření škodlivé účinky MeSH
- lidé MeSH
- nádory plic etiologie genetika MeSH
- nemalobuněčný karcinom plic etiologie genetika MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH