A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
- MeSH
- antitumorózní látky * farmakologie MeSH
- benzothiazoly MeSH
- fotosenzibilizující látky farmakologie terapeutické užití MeSH
- fototoxická dermatitida * farmakoterapie MeSH
- iridium farmakologie MeSH
- komplexní sloučeniny * farmakologie MeSH
- lidé MeSH
- lyzozomy MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
- MeSH
- antitumorózní látky * farmakologie chemie chemická syntéza terapeutické užití MeSH
- apoptóza účinky léků MeSH
- buněčná membrána účinky léků metabolismus MeSH
- chinoxaliny * chemie farmakologie chemická syntéza MeSH
- fotochemoterapie * MeSH
- fotosenzibilizující látky * farmakologie chemie chemická syntéza terapeutické užití MeSH
- komplexní sloučeniny * farmakologie chemie chemická syntéza terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky * účinky léků patologie MeSH
- nádory tračníku * farmakoterapie patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- ruthenium * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Metastatic cancer remains a formidable challenge in anticancer therapy. Despite efforts to develop effective antimetastasis drugs over the past half-century, currently approved treatments fall short of expectations. This report highlights the promising antiproliferative activity of a ruthenium-based therapeutic agent, namely dichlorido(p-cymene)[2-amino-4-(pyridin-3-yl)-4H-benzo[h]-chromene-3-carbonitrile]ruthenium(II) (complex 1) against metastatic cell lines. Complex 1 shows significant efficacy in metastatic LoVo and Du-145 cell lines at nanomolar concentrations, being markedly more active than clinically used anticancer cisplatin. Studies on the MDA-MB-231 cell line, which displays invasive characteristics, demonstrated that 1 significantly reduces cell invasion. This efficacy was confirmed by its impact on matrix metalloproteinase production in MDA-MB-231 cells. Given that cell migration drives cancer invasion and metastasis, complex 1's effect on MDA-MB-231 cell migration was evaluated via wound healing assay and vimentin network analysis. Results indicated a strong reduction in migration. A re-adhesion assay further demonstrated that 1 significantly lowers the re-adhesion ability of MDA-MB-231 cells compared to cisplatin. To better simulate the human body environment, a 3D spheroid invasion assay was used. This method showed that 1 effectively inhibits tumor spheroids from infiltrating the surrounding extracellular matrix. This study underscores the potential of (arene)ruthenium(II) complexes with naphthopyran ligands as potent antimetastatic agents for chemotherapy.
- MeSH
- antitumorózní látky * farmakologie chemie terapeutické užití MeSH
- buněčná adheze účinky léků MeSH
- komplexní sloučeniny * farmakologie chemie terapeutické užití MeSH
- lidé MeSH
- metastázy nádorů prevence a kontrola farmakoterapie MeSH
- nádorové buněčné linie MeSH
- pohyb buněk * účinky léků MeSH
- proliferace buněk účinky léků MeSH
- ruthenium * chemie farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Herein, we describe the general design, synthesis, characterization, and biological activity of new multitargeting Pt(IV) prodrugs that combine antitumor cisplatin and dasatinib, a potent inhibitor of Src kinase. These prodrugs exhibit impressive antiproliferative and anti-invasive activities in tumor cell lines in both two-dimensional (2D) monolayers of cell cultures and three-dimensional (3D) spheroids. We show that the cisplatin moiety and dasatinib in the investigated Pt(IV) complexes are both involved in the mechanism of action in MCF7 breast cancer cells and act synergistically. Thus, combining dasatinib and cisplatin into one molecule, compared to using individual components in a mix, may bring several advantages, such as significantly higher activity in cancer cell lines and higher selectivity for tumor cells. Most importantly, Pt(IV)-dasatinib complexes hold significant promise for potential anticancer therapies by targeting epithelial-mesenchymal transition, thus preventing the spread and metastasis of tumors, a value unachievable by a simple combination of both individual components.
- MeSH
- antitumorózní látky * farmakologie chemie chemická syntéza MeSH
- cisplatina * farmakologie MeSH
- dasatinib * farmakologie chemie chemická syntéza MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- organoplatinové sloučeniny farmakologie chemie chemická syntéza MeSH
- prekurzory léčiv * farmakologie chemie chemická syntéza MeSH
- proliferace buněk účinky léků MeSH
- synergismus léků * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A multitargeting prodrug (2) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s ; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.
- MeSH
- antitumorózní látky * farmakologie terapeutické užití MeSH
- doxorubicin farmakologie terapeutické užití MeSH
- gemcitabin MeSH
- imunogenní buněčná smrt MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory * MeSH
- oxaliplatin farmakologie MeSH
- prekurzory léčiv * farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (PtII56MeSS, 1) exhibits high potency across numerous cancer cell lines acting by a multimodal mechanism. However, 1 also displays side toxicity and in vivo activity; all details of its mechanism of action are not entirely clear. Here, we describe the synthesis and biological properties of new platinum(IV) prodrugs that combine 1 with one or two axially coordinated molecules of diclofenac (DCF), a non-steroidal anti-inflammatory cancer-selective drug. The results suggest that these Pt(IV) complexes exhibit mechanisms of action typical for Pt(II) complex 1 and DCF, simultaneously. The presence of DCF ligand(s) in the Pt(IV) complexes promotes the antiproliferative activity and selectivity of 1 by inhibiting lactate transporters, resulting in blockage of the glycolytic process and impairment of mitochondrial potential. Additionally, the investigated Pt(IV) complexes selectively induce cell death in cancer cells, and the Pt(IV) complexes containing DCF ligands induce hallmarks of immunogenic cell death in cancer cells.
- MeSH
- antiflogistika nesteroidní farmakologie MeSH
- antitumorózní látky * MeSH
- diklofenak farmakologie MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- nádory * MeSH
- organoplatinové sloučeniny farmakologie MeSH
- platina MeSH
- prekurzory léčiv * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We present the synthesis and characterization of six new heteroleptic osmium(II) complexes of the type [Os(C^N)(N^N)2]OTf (N^N = 2,2'-bipyridine and dipyrido[3,2-d:2',3'-f]quinoxaline; C^N = deprotonated methyl 1-butyl-2aryl-benzimidazolecarboxylate) with varying substituents in the R3 position of the phenyl ring of the cyclometalating C^N ligand. The new compounds are highly kinetically inert and absorb a full-wavelength range of visible light. An investigation of the antiproliferative activity of the new compounds has been performed using a panel of human cancer and noncancerous 2D cell monolayer cultures under dark conditions and green light irradiation. The results demonstrate that the new Os(II) complexes are markedly more potent than conventional cisplatin. The promising antiproliferative activity of selected Os(II) complexes was also confirmed using 3D multicellular tumor spheroids, which have the characteristics of solid tumors and can mimic the tumor tissue microenvironment. The mechanism of antiproliferative action of complexes has also been investigated and revealed that the investigated Os(II) complexes activate the endoplasmic reticulum stress pathway in cancer cells and disrupt calcium homeostasis.
- MeSH
- antitumorózní látky * farmakologie MeSH
- benzimidazoly farmakologie MeSH
- homeostáza MeSH
- komplexní sloučeniny * farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory * MeSH
- osmium farmakologie MeSH
- vápník MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
While ruthenium arene complexes have been widely investigated for their medicinal potential, studies on homologous compounds containing a tridentate tris(1-pyrazolyl)methane ligand are almost absent in the literature. Ruthenium(II) complex 1 was obtained by a modified reported procedure; then, the reactions with a series of organic molecules (L) in boiling alcohol afforded novel complexes 2-9 in 77-99% yields. Products 2-9 were fully structurally characterized. They are appreciably soluble in water, where they undergo partial chloride/water exchange. The antiproliferative activity was determined using a panel of human cancer cell lines and a noncancerous one, evidencing promising potency of 1, 7, and 8 and significant selectivity toward cancer cells. The tested compounds effectively accumulate in cancer cells, and mitochondria represent a significant target of biological action. Most notably, data provide convincing evidence that the mechanism of biological action is mediated by the inhibiting of mitochondrial calcium intake.
- MeSH
- antitumorózní látky * farmakologie terapeutické užití MeSH
- homeostáza MeSH
- komplexní sloučeniny * farmakologie MeSH
- lidé MeSH
- mitochondrie MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- ruthenium * farmakologie MeSH
- vápník MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 μM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.
In this work, the mechanism underlying the anticancer activity of a photoactivatable Ir(III) compound of the type [Ir(C^N)2(dppz)][PF6] where C^N = 1-methyl-2-(2'-thienyl)benzimidazole (complex 1) was investigated. Complex 1 photoactivated by visible light shows potent activity against highly aggressive and poorly treatable Rhabdomyosarcoma (RD) cells, the most frequent soft tissue sarcomas of children. This remarkable activity of 1 was observed not only in RD cells cultured in 2D monolayers but, more importantly, also in 3D spheroids, which resemble in many aspects solid tumors and serve as a promising model to mimic the in vivo situation. Importantly, photoactivated 1 kills not only differentiated RD cells but also even more effectively cancer stem cells (CSCs) of RD. One of the factors responsible for the activity of irradiated 1 in RD CSCs is its ability to produce ROS in these cells more effectively than in differentiated RD cells. Moreover, photoactivated 1 caused in RD differentiated cells and CSCs a significant decrease of mitochondrial membrane potential and promotes opening mitochondrial permeability transition pores in these cells, a mechanism that has never been demonstrated for any other metal-based anticancer complex. The results of this work give evidence that 1 has a potential for further evaluation using in vivo models as a promising chemotherapeutic agent for photodynamic therapy of hardly treatable human Rhabdomyosarcoma, particularly for its activity in both stem and differentiated cancer cells.
- MeSH
- antitumorózní látky * farmakologie MeSH
- dítě MeSH
- iridium farmakologie MeSH
- komplexní sloučeniny * farmakologie MeSH
- lidé MeSH
- mitochondrie MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky MeSH
- rhabdomyosarkom * farmakoterapie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH