The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
- MeSH
- aminokyseliny metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- kanály aktivované uvolněním vápníku * genetika MeSH
- membránové proteiny * metabolismus MeSH
- mutace MeSH
- myši MeSH
- protein ORAI1 metabolismus MeSH
- protein STIM1 genetika MeSH
- vápník metabolismus MeSH
- vápníkové kanály metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- gating iontového kanálu genetika MeSH
- genetické vektory chemie metabolismus MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lidé MeSH
- liposomy chemie metabolismus MeSH
- luminescentní proteiny genetika metabolismus MeSH
- metoda terčíkového zámku MeSH
- mutace MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- reportérové geny MeSH
- simulace molekulární dynamiky MeSH
- substituce aminokyselin MeSH
- vápník metabolismus MeSH
- vápníková signalizace * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.
- MeSH
- abnormální erytrocyty MeSH
- dyslexie genetika MeSH
- HEK293 buňky MeSH
- ichtyóza genetika MeSH
- kanály aktivované uvolněním vápníku metabolismus MeSH
- klonování DNA MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- metoda terčíkového zámku MeSH
- migréna genetika MeSH
- mióza genetika MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- nádorové proteiny genetika MeSH
- protein ORAI1 genetika MeSH
- protein STIM1 genetika MeSH
- slezina abnormality MeSH
- svalová únava genetika MeSH
- trombocytopatie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.
- MeSH
- algoritmy MeSH
- buněčná membrána metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- HEK293 buňky MeSH
- hydrofobní a hydrofilní interakce MeSH
- konfokální mikroskopie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- motivy EF-ruky MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- proteinové domény * MeSH
- rozbalení proteinů * MeSH
- simulace molekulární dynamiky * MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
- MeSH
- HEK293 buňky MeSH
- lidé MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- vápníkové kanály chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report a new NMR-scale purification procedure for two recombinant wild type fragments of the stromal interaction molecule 1 (STIM1). This protein acts as a calcium sensor in the endoplasmic reticulum (ER) and extends into the cytosol accumulating at ER - plasma membrane (PM) junctions upon calcium store depletion ultimately leading to activation of the Orai/CRAC channel. The functionally relevant cytosolic part of STIM1 consists of three coiled coil domains, which are mainly involved in intra- and inter-molecular homomeric interactions as well as coupling to and gating of CRAC channels. The optimized one-step rapid purification procedure for two 15N,13C isotope-labeled cytosolic coiled coil fragments, which avoids the problems of previous approaches. The high yields of soluble well folded 15N,13C isotope-labeled cytosolic coiled coil fragments followed by detergent screening provide for initial NMR characterization of these domains. The longer 30.5 kDa fragment represents the largest STIM1 wild type fragment that has been recombinantly prepared and characterized in solution without need for mutation or refolding.
- MeSH
- chromatografie afinitní MeSH
- dynamický rozptyl světla MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- izotopové značení MeSH
- izotopy dusíku chemie izolace a purifikace MeSH
- izotopy uhlíku chemie izolace a purifikace MeSH
- lidé MeSH
- nádorové proteiny chemie izolace a purifikace MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- protein STIM1 chemie izolace a purifikace MeSH
- proteinové domény MeSH
- rekombinantní proteiny chemie izolace a purifikace MeSH
- rozpustnost MeSH
- sbalování proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
STIM1 and Orai1 are key components of the Ca2+-release activated Ca2+ (CRAC) current. Orai1, which represents the subunit forming the CRAC channel complex, is activated by the ER resident Ca2+ sensor STIM1. The genetically inherited Stormorken syndrome disease has been associated with the STIM1 single point R304W mutant. The resulting constitutive activation of Orai1 mainly involves the CRAC-activating domain CAD/SOAR of STIM1, the exposure of which is regulated by the molecular interplay between three cytosolic STIM1 coiled-coil (CC) domains. Here we present a dual mechanism by which STIM1 R304W attains the pathophysiological, constitutive activity eliciting the Stormorken syndrome. The R304W mutation induces a helical elongation within the CC1 domain, which together with an increased CC1 homomerization, destabilize the resting state of STIM1. This culminates, even in the absence of store depletion, in structural extension and CAD/SOAR exposure of STIM1 R304W leading to constitutive CRAC channel activation and Stormorken disease.
- MeSH
- abnormální erytrocyty metabolismus patologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bodová mutace * MeSH
- dyslexie genetika metabolismus patologie MeSH
- exprese genu MeSH
- HEK293 buňky MeSH
- ichtyóza genetika metabolismus patologie MeSH
- interakční proteinové domény a motivy MeSH
- iontový transport MeSH
- konformace proteinů, alfa-helix MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- metoda terčíkového zámku MeSH
- migréna genetika metabolismus patologie MeSH
- mióza genetika metabolismus patologie MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- reportérové geny MeSH
- sekvence aminokyselin MeSH
- slezina abnormality metabolismus patologie MeSH
- substituce aminokyselin MeSH
- svalová únava genetika MeSH
- trombocytopatie genetika metabolismus patologie MeSH
- vápník chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The channel Orai1 requires Ca2+ store depletion in the endoplasmic reticulum and an interaction with the Ca2+ sensor STIM1 to mediate Ca2+ signaling. Alterations in Orai1-mediated Ca2+ influx have been linked to several pathological conditions including immunodeficiency, tubular myopathy, and cancer. We screened large-scale cancer genomics data sets for dysfunctional Orai1 mutants. Five of the identified Orai1 mutations resulted in constitutively active gating and transcriptional activation. Our analysis showed that certain Orai1 mutations were clustered in the transmembrane 2 helix surrounding the pore, which is a trigger site for Orai1 channel gating. Analysis of the constitutively open Orai1 mutant channels revealed two fundamental gates that enabled Ca2+ influx: Arginine side chains were displaced so they no longer blocked the pore, and a chain of water molecules formed in the hydrophobic pore region. Together, these results enabled us to identify a cluster of Orai1 mutations that trigger Ca2+ permeation associated with gene transcription and provide a gating mechanism for Orai1.
- MeSH
- aktivace transkripce genetika MeSH
- arginin metabolismus MeSH
- buněčná membrána metabolismus MeSH
- Drosophila melanogaster MeSH
- gating iontového kanálu genetika MeSH
- genomika MeSH
- HCT116 buňky MeSH
- HEK293 buňky MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- mutace MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádory metabolismus MeSH
- nemoci svalů metabolismus MeSH
- protein ORAI1 genetika metabolismus MeSH
- protein STIM1 genetika metabolismus MeSH
- sekundární struktura proteinů genetika MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca(2+) release-activated Ca(2+) (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca(2+) entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding-deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE.
- MeSH
- biotinylace MeSH
- bodová mutace MeSH
- buněčná membrána metabolismus MeSH
- buněčné linie MeSH
- cholesterol oxidasa metabolismus MeSH
- cholesterol metabolismus MeSH
- cirkulární dichroismus MeSH
- elektrofyziologické jevy MeSH
- fluorescenční spektrometrie MeSH
- HEK293 buňky MeSH
- histamin metabolismus MeSH
- lidé MeSH
- mastocyty metabolismus MeSH
- mutace MeSH
- peptidy metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- signální transdukce MeSH
- terciární struktura proteinů MeSH
- vápník metabolismus MeSH
- vápníkové kanály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH