Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.
- MeSH
- encefalomyelitida autoimunitní experimentální * genetika MeSH
- interleukin-17 metabolismus MeSH
- lidé MeSH
- myši MeSH
- proteiny obsahující MARVEL doménu genetika MeSH
- psoriatická artritida * MeSH
- psoriáza * MeSH
- receptory interleukinu-17 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.
- MeSH
- antigeny nádorové * genetika metabolismus MeSH
- kolorektální nádory * genetika patologie MeSH
- lidé MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- myši MeSH
- nádorové buněčné linie metabolismus MeSH
- proliferace buněk MeSH
- transkripční faktor ATF2 * genetika metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions. However, the functional classification of Ub-ligases needs to be revised and extended. METHODS: In the current study, we used a novel semantic biclustering technique for expression profiling of Ub-ligases and ubiquitination-related genes in the murine gastrointestinal tract (GIT). We accommodated a general framework of the algorithm for finding tissue-specific gene expression clusters in GIT. In order to test identified clusters in a biological system, we used a model of epithelial regeneration. For this purpose, a dextran sulfate sodium (DSS) mouse model, following with in situ hybridization, was used to expose genes with possible compensatory features. To determine cell-type specific distribution of Ub-ligases and ubiquitination-related genes, principal component analysis (PCA) and Uniform Manifold Approximation and Projection technique (UMAP) were used to analyze the Tabula Muris scRNA-seq data of murine colon followed by comparison with our clustering results. RESULTS: Our established clustering protocol, that incorporates the semantic biclustering algorithm, demonstrated the potential to reveal interesting expression patterns. In this manner, we statistically defined gene clusters consisting of the same genes involved in distinct regulatory pathways vs distinct genes playing roles in functionally similar signaling pathways. This allowed us to uncover the potentially redundant features of GIT-specific Ub-ligases and ubiquitination-related genes. Testing the statistically obtained results on the mouse model showed that genes clustered to the same ontology group simultaneously alter their expression pattern after induced epithelial damage, illustrating their complementary role during tissue regeneration. CONCLUSIONS: An optimized semantic clustering protocol demonstrates the potential to reveal a readable and unique pattern in the expression profiling of GIT-specific Ub-ligases, exposing ontologically relevant gene clusters with potentially redundant features. This extends our knowledge of ontological relationships among Ub-ligases and ubiquitination-related genes, providing an alternative and more functional gene classification. In a similar way, semantic cluster analysis could be used for studding of other enzyme families, tissues and systems.
- MeSH
- gastrointestinální trakt metabolismus MeSH
- lidé MeSH
- myši MeSH
- sémantika * MeSH
- shluková analýza MeSH
- ubikvitin genetika metabolismus MeSH
- ubikvitinligasy * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes. LST1 gene is located in MHCIII locus close to many immunologically relevant genes. In addition, its expression increases under inflammatory conditions such as viral infection, rheumatoid arthritis and inflammatory bowel disease and its deficiency was shown to result in slightly increased sensitivity to influenza infection in mice. However, little else is known about its role in the immune system homeostasis and immune response. Here we show that similar to humans, LST1 is expressed in mice in the cells of the myeloid lineage. In vivo, its deficiency results in alterations in multiple leukocyte subset abundance in steady state and under inflammatory conditions. Moreover, LST1-deficient mice show significant level of resistance to dextran sodium sulphate (DSS) induced acute colitis, a model of inflammatory bowel disease. These data demonstrate that LST1 regulates leukocyte abundance in lymphoid organs and inflammatory response in the gut.
- MeSH
- biologické markery MeSH
- dendritické buňky imunologie metabolismus MeSH
- fosforylace MeSH
- genotyp MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kolitida etiologie metabolismus patologie MeSH
- leukocyty imunologie metabolismus MeSH
- lidé MeSH
- lipopolysacharidy imunologie MeSH
- makrofágy imunologie metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- regulace genové exprese * MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
- MeSH
- angiotensin konvertující enzym 2 antagonisté a inhibitory genetika metabolismus MeSH
- COVID-19 imunologie prevence a kontrola virologie MeSH
- Dependovirus genetika MeSH
- epitopy B-lymfocytární chemie imunologie MeSH
- farmakoterapie COVID-19 MeSH
- glykoprotein S, koronavirus antagonisté a inhibitory chemie imunologie MeSH
- imunitní únik genetika MeSH
- imunoglobulin G imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- monoklonální protilátky imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutralizující protilátky imunologie terapeutické užití MeSH
- protilátky bispecifické imunologie terapeutické užití MeSH
- SARS-CoV-2 genetika imunologie MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.
- MeSH
- biologické markery metabolismus MeSH
- Escherichia coli fyziologie MeSH
- gnotobiologické modely genetika MeSH
- imunitní systém metabolismus MeSH
- kolon metabolismus MeSH
- mikrobiota MeSH
- myši inbrední BALB C MeSH
- organoidy metabolismus MeSH
- regulace genové exprese MeSH
- slizniční imunita MeSH
- stanovení celkové genové exprese * MeSH
- střevní sliznice metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The proper positioning of organs during development is essential, yet little is known about the regulation of this process in mammals. Using murine tooth development as a model, we have found that cell migration plays a central role in positioning of the organ primordium. By combining lineage tracing, genetic cell ablation, and confocal live imaging, we identified a migratory population of Fgf8-expressing epithelial cells in the embryonic mandible. These Fgf8-expressing progenitors furnish the epithelial cells required for tooth development, and the progenitor population migrates toward a Shh-expressing region in the mandible, where the tooth placode will initiate. Inhibition of Fgf and Shh signaling disrupted the oriented migration of cells, leading to a failure of tooth development. These results demonstrate the importance of intraepithelial cell migration in proper positioning of an initiating organ.
- MeSH
- epitelové buňky cytologie metabolismus MeSH
- fibroblastové růstové faktory metabolismus MeSH
- mezoderm cytologie metabolismus MeSH
- moláry cytologie embryologie metabolismus MeSH
- morfogeneze fyziologie MeSH
- myši MeSH
- odontogeneze fyziologie MeSH
- pohyb buněk fyziologie MeSH
- vývojová regulace genové exprese fyziologie MeSH
- zuby cytologie embryologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
UNLABELLED: Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally deleted, using a Cre/loxP system, to identify genes influenced by the loss of Hic1. One of the transcripts upregulated upon Hic1 ablation is the toll-like receptor 2 (TLR2). Tlr2 expression levels increased in Hic1-deficient mouse embryonic fibroblasts (MEF) and cultured intestinal organoids or in human cells upon HIC1 knockdown. In addition, HIC1 associated with the TLR2 gene regulatory elements, as detected by chromatin immunoprecipitation, indicating that Tlr2 indeed represents a direct Hic1 target. The Tlr2 receptor senses "danger" signals of microbial or endogenous origin to trigger multiple signaling pathways, including NF-κB signaling. Interestingly, Hic1 deficiency promoted NF-κB pathway activity not only in cells stimulated with Tlr2 ligand, but also in cells treated with NF-κB activators that stimulate different surface receptors. In the intestine, Hic1 is mainly expressed in differentiated epithelial cells and its ablation leads to increased Tlr2 production. Finally, in a chemical-induced mouse model of carcinogenesis, Hic1 absence resulted in larger Tlr2-positive colonic tumors that showed increased proportion of proliferating cells. IMPLICATIONS: The tumor-suppressive function of Hic1 in colon is related to its inhibitory action on proproliferative signaling mediated by the Tlr2 receptor present on tumor cells.
- MeSH
- azoxymethan MeSH
- epitelové buňky MeSH
- genový knockdown MeSH
- karcinogeneze metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny metabolismus MeSH
- nádory tračníku MeSH
- NF-kappa B metabolismus MeSH
- proliferace buněk MeSH
- signální transdukce * MeSH
- síran dextranu MeSH
- střeva cytologie MeSH
- toll-like receptor 2 metabolismus MeSH
- transkripční faktory Krüppel-like genetika metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and processing of numerous soluble and cell-surface proteins, appear to play important roles in pathogenesis of gastrointestinal diseases. MMPs influence migration of inflammatory cells, mucosal destruction, matrix deposition and degradation. In this study, we analysed the expression of MMP-19 in the main forms of gastrointestinal diseases including inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease, and colorectal carcinoma. We identified prominent MMP-19 expression in unaffected areas of intestinal epithelia and macrophages but not in other cells or tissues. Abundant expression of MMP-19 was also found in the endothelium of blood and lymphatic vessels of inflamed intestinal tissue. High MMP-19 immunoreactivity was also associated with macrophages in inflamed areas and myenteric plexuses. In comparison to the intestinal epithelium, all these cell types and compartments appeared to express MMP-19 irrespective of the disease pathogenesis and progression. Intestinal epithelia exhibited striking differential immunoreactivity for MMP-19. While immunoreactivity of monoclonal antibody recognizing the propeptide domain declined in virtually all IBD and colorectal carcinoma samples, other polyclonal antibodies against the hinge region and propetide domain did not show such an obvious decrease. Additional Western blotting analysis revealed that the antibodies against MMP-19 recognize differently processed forms of this MMP. The disappearance of immunoreactivity of the monoclonal anti-propeptide domain antibody does not mean down-regulation of MMP-19, but processing of the immature form. As this processing likely leads to the activation of this MMP, the differential staining pattern may be an important sign of disease progression.
- MeSH
- dospělí MeSH
- gastrointestinální nemoci enzymologie patologie MeSH
- HCT116 buňky MeSH
- kolon enzymologie patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metaloproteinasy secernované do matrix metabolismus MeSH
- mladý dospělý MeSH
- posttranslační úpravy proteinů * MeSH
- progrese nemoci * MeSH
- protilátky metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- střevní sliznice enzymologie patologie MeSH
- tenké střevo enzymologie patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH