Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat BRCA1/2 mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection. Analysis of BRCA1/2 status showed that in our cohort of 31 ovarian cancer PDX models 22.6% harbored a BRCA1/2 alteration (7/31), and 48.3% (15/31) were genomically unstable as measured by copy number alteration analysis. In vivo, PARPi olaparib response was measured in 15 selected PDX models. Functional assessment of HR using ex vivo irradiation-induced RAD51 foci formation identified all olaparib-sensitive PDX models, including four models without BRCA1/2 alterations. In contrast, replication fork protection or replication speed in ex vivo tumor tissue did not correlate with olaparib response. Targeted panel sequencing in olaparib-sensitive models lacking BRCA1/2 alterations revealed a MUS81 variant as a possible mechanism underlying PARPi sensitivity. Combined, we show that ex vivo RAD51 analysis effectively predicts in vivo olaparib response and revealed a subset of PARPi-sensitive, HR-deficient ovarian cancer PDX models, lacking a BRCA1/2 alteration.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Monoallelic germline pathogenic variants (GPVs) in five Fanconi anemia (FA) genes (BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, BRIP1/FANCJ, and RAD51C/FANCO) confer an increased risk of breast (BC) and/or ovarian (OC) cancer, but the role of GPVs in 17 other FA genes remains unclear. METHODS: Here, we investigated the association of germline variants in FANCG/XRCC9 with BC and OC risk. RESULTS: The frequency of truncating GPVs in FANCG did not differ between BC (20/10,204; 0.20%) and OC (8/2966; 0.27%) patients compared to controls (6/3250; 0.18%). In addition, only one out of five tumor samples showed loss-of-heterozygosity of the wild-type FANCG allele. Finally, none of the nine functionally tested rare recurrent missense FANCG variants impaired DNA repair activities (FANCD2 monoubiquitination and FANCD2 foci formation) upon DNA damage, in contrast to all tested FANCG truncations. CONCLUSION: Our study suggests that heterozygous germline FANCG variants are unlikely to contribute to the development of BC or OC.
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu * genetika MeSH
- nádory vaječníků * genetika MeSH
- oprava DNA genetika MeSH
- protein FANCG * genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D. We show that while control cells permanently exit the cell cycle and reside in senescence in the presence of DNA damage caused by ionising radiation or replication stress induced by the active RAS oncogene, RPE1-hTERT and BJ-hTERT cells carrying the truncated PPM1D continue proliferation in the presence of DNA damage, form micronuclei and accumulate genomic rearrangements revealed by karyotyping. Further, we show that increased PPM1D activity promotes cell growth in the soft agar and formation of tumours in xenograft models. Finally, expression profiling of the transformed clones revealed dysregulation of several oncogenic and tumour suppressor pathways. Our data support the oncogenic potential of PPM1D in the context of exposure to ionising radiation and oncogene-induced replication stress.
- MeSH
- buněčná smrt genetika MeSH
- lidé MeSH
- myši MeSH
- nádorová transformace buněk * genetika MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- poškození DNA * genetika MeSH
- proliferace buněk genetika MeSH
- proteinfosfatasa 2C * genetika metabolismus MeSH
- proteinfosfatasy genetika metabolismus MeSH
- stárnutí buněk * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ovarian cancer (OC) is mostly diagnosed in advanced stages with high incidence-to-mortality rate. Nevertheless, some patients achieve long-term disease-free survival. However, the prognostic markers have not been well established. OBJECTIVE: The primary objective of this study was to analyse the association of the suggested prognostic marker rs2185379 in PRDM1 with long-term survival in a large independent cohort of advanced OC patients. METHODS: We genotyped 545 well-characterized advanced OC patients. All patients were tested for OC predisposition. The effect of PRDM1 rs2185379 and other monitored clinicopathological and genetic variables on survival were analysed. RESULTS: The univariate analysis revealed no significant effect of PRDM1 rs2185379 on survival whereas significantly worse prognosis was observed in postmenopausal patients (HR = 2.49; 95%CI 1.90-3.26; p= 4.14 × 10 - 11) with mortality linearly increasing with age (HR = 1.05 per year; 95%CI 1.04-1.07; p= 2 × 10 - 6), in patients diagnosed with non-high-grade serous OC (HR = 0.44; 95%CI 0.32-0.60; p= 1.95 × 10 - 7) and in patients carrying a gBRCA1 pathogenic variant (HR = 0.65; 95%CI 0.48-0.87; p= 4.53 × 10 - 3). The multivariate analysis interrogating the effect of PRDM1 rs2185379 with other significant prognostic factors revealed marginal association of PRDM1 rs2185379 with worse survival in postmenopausal women (HR = 1.54; 95%CI 1.01-2.38; p= 0.046). CONCLUSIONS: Unlike age at diagnosis, OC histology or gBRCA1 status, rs2185379 in PRDM1 is unlikely a marker of long-term survival in patients with advance OC.
- MeSH
- dospělí MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádory vaječníků * genetika mortalita patologie MeSH
- prognóza MeSH
- protein BRCA1 * genetika MeSH
- protein PRDI-BF1 * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.
- MeSH
- checkpoint kinasa 2 genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory vaječníků * genetika MeSH
- studie případů a kontrol MeSH
- věk při počátku nemoci * MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
- MeSH
- DNA vazebné proteiny genetika MeSH
- enzymy opravy DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- homologní protein MRE11 * genetika MeSH
- hydrolasy působící na anhydridy kyselin * genetika MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- nádory * genetika MeSH
- proteiny buněčného cyklu * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.
- MeSH
- DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- lidé MeSH
- nádory genetika diagnóza MeSH
- reprodukovatelnost výsledků MeSH
- RNA genetika MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční analýza RNA metody MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The polygenic risk score (PRS) allows the quantification of the polygenic effect of many low-penetrance alleles on the risk of breast cancer (BC). This study aimed to evaluate the performance of two sets comprising 77 or 313 low-penetrance loci (PRS77 and PRS313) in patients with BC in the Czech population. METHODS: In a retrospective case-control study, variants were genotyped from both the PRS77 and PRS313 sets in 1329 patients with BC and 1324 noncancer controls, all women without germline pathogenic variants in BC predisposition genes. Odds ratios (ORs) were calculated according to the categorical PRS in individual deciles. Weighted Cox regression analysis was used to estimate the hazard ratio (HR) per standard deviation (SD) increase in PRS. RESULTS: The distributions of standardized PRSs in patients and controls were significantly different (p < 2.2 × 10-16) with both sets. PRS313 outperformed PRS77 in categorical and continuous PRS analyses. For patients in the highest 2.5% of PRS313, the risk reached an OR of 3.05 (95% CI, 1.66-5.89; p = 1.76 × 10-4). The continuous risk was estimated as an HRper SD of 1.64 (95% CI, 1.49-1.81; p < 2.0 × 10-16), which resulted in an absolute risk of 21.03% at age 80 years for individuals in the 95th percentile of PRS313. Discordant categorization into PRS deciles was observed in 248 individuals (9.3%). CONCLUSIONS: Both PRS77 and PRS313 are able to stratify individuals according to their BC risk in the Czech population. PRS313 shows better discriminatory ability. The results support the potential clinical utility of using PRS313 in individualized BC risk prediction.
- MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické rizikové skóre MeSH
- hodnocení rizik metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- multifaktoriální dědičnost genetika MeSH
- nádory prsu * genetika MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.
- MeSH
- checkpoint kinasa 2 * genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * genetika MeSH
- introny * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu * genetika MeSH
- nádory vaječníků genetika MeSH
- prekurzory RNA genetika MeSH
- sestřih RNA * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
PURPOSE: Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN: We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS: A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS: We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers.
- MeSH
- checkpoint kinasa 2 genetika MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- missense mutace MeSH
- nádory prsu * epidemiologie genetika MeSH
- zárodečné buňky MeSH
- zárodečné mutace MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH