Antisense transcripts play an important role in generating regulatory non-coding RNAs but whether these transcripts are also translated to generate functional peptides remains poorly understood. In this study, RNA sequencing and six-frame database generation were combined with mass spectrometry analysis of peptides isolated from polysomes to identify Nascent Pioneer Translation Products (Na-PTPs) originating from alternative reading frames of bi-directional transcripts. Two Na-PTP originating peptides derived from antisense strands stimulated CD8+ T cell proliferation when presented to peripheral blood mononuclear cells (PBMCs) from nine healthy donors. Importantly, an antigenic peptide derived from the reverse strand of two cDNA constructs was presented on MHC-I molecules and induced CD8+ T cell activation. The results demonstrate that three-frame translation of bi-directional transcripts generates antigenic peptide substrates for the immune system. This discovery holds significance for understanding the origin of self-discriminating peptide substrates for the major histocompatibility class I (MHC-I) pathway and for enhancing immune-based therapies against infected or transformed cells.
- MeSH
- aktivace lymfocytů imunologie MeSH
- antisense RNA * genetika imunologie MeSH
- CD8-pozitivní T-lymfocyty * imunologie MeSH
- leukocyty mononukleární imunologie MeSH
- lidé MeSH
- MHC antigeny I. třídy * imunologie genetika MeSH
- peptidy * imunologie genetika MeSH
- prezentace antigenu MeSH
- proteosyntéza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.
- MeSH
- antigeny protozoální * genetika imunologie MeSH
- ELISA metody MeSH
- genotyp MeSH
- nemoci ovcí * parazitologie diagnóza MeSH
- nemoci prasat * parazitologie diagnóza MeSH
- ovce MeSH
- peptidy imunologie MeSH
- prasata MeSH
- protilátky protozoální krev MeSH
- sérotypizace * metody MeSH
- toxoplazmóza zvířat * diagnóza parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The field of mRNA translation has witnessed an impressive expansion in the last decade. The once standard model of translation initiation has undergone, and is still undergoing, a major overhaul, partly due to more recent technical advancements detailing, for example, initiation at non-AUG codons. However, some of the pioneering works in this area have come from immunology and more precisely from the field of antigen presentation to the major histocompatibility class I (MHC-I) pathway. Despite early innovative studies from the lab of Nilabh Shastri demonstrating alternative mRNA translation initiation as a source for MHC-I peptide substrates, the mRNA translation field did not include these into their models. It was not until the introduction of the ribo-sequence technique that the extent of non-canonical translation initiation became widely acknowledged. The detection of peptides on MHC-I molecules by CD8 + T cells is extremely sensitive, making this a superior model system for studying alternative mRNA translation initiation from specific mRNAs. In view of this, we give a brief history on alternative initiation from an immunology perspective and its fundamental role in allowing the immune system to distinguish self from non-self and at the same time pay tribute to the works of Nilabh Shastri.
- MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- lidé MeSH
- messenger RNA genetika imunologie MeSH
- MHC antigeny I. třídy genetika imunologie MeSH
- peptidy genetika imunologie MeSH
- prezentace antigenu genetika imunologie MeSH
- proteosyntéza genetika imunologie MeSH
- receptory pro aktivovanou kinasu C genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.
- MeSH
- aktivace lymfocytů imunologie MeSH
- antigeny CD8 chemie genetika metabolismus MeSH
- biologické modely MeSH
- CD8-pozitivní T-lymfocyty imunologie metabolismus MeSH
- histokompatibilní antigeny chemie genetika imunologie MeSH
- interakční proteinové domény a motivy MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- multiproteinové komplexy chemie imunologie metabolismus MeSH
- mutace MeSH
- myši knockoutované MeSH
- myši MeSH
- peptidy chemie imunologie metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
- MeSH
- adaptivní imunita imunologie MeSH
- antigen prezentující buňky imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- imunitní dozor imunologie MeSH
- lidé MeSH
- MHC antigeny I. třídy imunologie MeSH
- peptidy imunologie MeSH
- prezentace antigenu imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
- MeSH
- antigeny genetika imunologie MeSH
- buněčné jádro genetika imunologie MeSH
- G-kvadruplexy MeSH
- imunitní únik genetika imunologie MeSH
- lidé MeSH
- messenger RNA genetika imunologie MeSH
- MHC antigeny I. třídy genetika imunologie MeSH
- nonsense mediated mRNA decay genetika imunologie MeSH
- peptidy genetika imunologie MeSH
- proteosyntéza genetika imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Hosts repeatedly bitten by sand flies develop antibodies against sand fly saliva and screening of these immunoglobulins can be employed to estimate the risk of Leishmania transmission, to indicate the feeding preferences of sand flies, or to evaluate the effectiveness of vector control campaigns. Previously, antibodies to sand fly saliva were detected using whole salivary gland homogenate (SGH) or recombinant proteins, both of which also have their disadvantages. This is the first study on sand flies where short peptides designed based on salivary antigens were successfully utilized for antibody screening. METHODOLOGY/PRINCIPAL FINDINGS: Specific IgG was studied in hosts naturally exposed to Phlebotomus orientalis, the main vector of Leishmania donovani in East Africa. Four peptides were designed by the commercial program EpiQuest-B, based on the sequences of the two most promising salivary antigens, yellow-related protein and ParSP25-like protein. Short amino acid peptides were synthesised and modified for ELISA experiments. Specific anti-P. orientalis IgG was detected in sera of dogs, goats, and sheep from Ethiopia. The peptide OR24 P2 was shown to be suitable for antibody screening; it correlated positively with SGH and its specificity and sensitivity were comparable or even better than that of previously published recombinant proteins. CONCLUSIONS/SIGNIFICANCE: OR24 P2, the peptide based on salivary antigen of P. orientalis, was shown to be a valuable tool for antibody screening of domestic animals naturally exposed to P. orientalis. We suggest the application of this promising methodology using species-specific short peptides to other sand fly-host combinations.
- MeSH
- ELISA metody MeSH
- imunoglobulin G krev MeSH
- kozy MeSH
- ovce MeSH
- peptidy imunologie MeSH
- Phlebotomus imunologie MeSH
- plošný screening metody MeSH
- protilátky krev MeSH
- psi MeSH
- senzitivita a specificita MeSH
- slinné proteiny a peptidy imunologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Etiopie MeSH
A BCL1 leukemia-cell-targeted polymer-drug conjugate with a narrow molecular weight distribution consisting of an N-(2-hydroxypropyl)methacrylamide copolymer carrier and the anticancer drug pirarubicin is prepared by controlled radical copolymerization followed by metal-free click chemistry. A targeting recombinant single chain antibody fragment (scFv) derived from a B1 monoclonal antibody is attached noncovalently to the polymer carrier via a coiled coil interaction between two complementary peptides. Two pairs of coiled coil forming peptides (abbreviated KEK/EKE and KSK/ESE) are used as linkers between the polymer-pirarubicin conjugate and the targeting protein. The targeted polymer conjugate with the coiled coil linker KSK/ESE exhibits 4× better cell binding activity and 2× higher cytotoxicity in vitro compared with the other conjugate. Treatment of mice with established BCL1 leukemia using the scFv-targeted polymer conjugate leads to a markedly prolonged survival time of the experimental animals compared with the treatment using the free drug and the nontargeted polymer-pirarubicin conjugate.
- MeSH
- akrylamidy chemie MeSH
- cílená molekulární terapie MeSH
- click chemie MeSH
- cyklin D1 antagonisté a inhibitory imunologie MeSH
- imunoglobuliny - fragmenty aplikace a dávkování imunologie MeSH
- imunokonjugáty aplikace a dávkování chemie MeSH
- lékové transportní systémy MeSH
- leukemie imunologie patologie terapie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- monoklonální protilátky chemie imunologie MeSH
- myši MeSH
- nosiče léků aplikace a dávkování chemie MeSH
- peptidy chemie imunologie MeSH
- polymery aplikace a dávkování chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Adaptive immune responses to newly encountered pathogens depend on the mobilization of antigen-specific clonotypes from a vastly diverse pool of naive T cells. Using recent advances in immune repertoire sequencing technologies, models of the immune receptor rearrangement process, and a database of annotated T cell receptor (TCR) sequences with known specificities, we explored the baseline frequencies of T cells specific for defined human leukocyte antigen (HLA) class I-restricted epitopes in healthy individuals. METHODS: We used a database of TCR sequences with known antigen specificities and a probabilistic TCR rearrangement model to estimate the baseline frequencies of TCRs specific to distinct antigens epitopespecificT-cells. We verified our estimates using a publicly available collection of TCR repertoires from healthy individuals. We also interrogated a database of immunogenic and non-immunogenic peptides is used to link baseline T-cell frequencies with epitope immunogenicity. RESULTS: Our findings revealed a high degree of variability in the prevalence of T cells specific for different antigens that could be explained by the physicochemical properties of the corresponding HLA class I-bound peptides. The occurrence of certain rearrangements was influenced by ancestry and HLA class I restriction, and umbilical cord blood samples contained higher frequencies of common pathogen-specific TCRs. We also identified a quantitative link between specific T cell frequencies and the immunogenicity of cognate epitopes presented by defined HLA class I molecules. CONCLUSIONS: Our results suggest that the population frequencies of specific T cells are strikingly non-uniform across epitopes that are known to elicit immune responses. This inference leads to a new definition of epitope immunogenicity based on specific TCR frequencies, which can be estimated with a high degree of accuracy in silico, thereby providing a novel framework to integrate computational and experimental genomics with basic and translational research efforts in the field of T cell immunology.
BACKGROUND: Immunotherapy with peptide hydrolysates from Lolium perenne (LPP) is an alternative treatment for seasonal allergic rhinitis with or without asthma. The aim of this study was to assess the clinical efficacy and safety of a cumulative dose of 170 μg LPP administered subcutaneously over 3 weeks. METHODS: In a randomized, double-blind, placebo-controlled trial, 554 adults with grass pollen rhinoconjunctivitis were randomized (1:2 ratio) to receive 8 subcutaneous injections of placebo or 170 μg LPP administered in increasing doses in 4 visits over 3 weeks. The primary outcome was the combined symptom and medication score (CSMS) measured over the peak pollen season. Reactivity to conjunctival provocation test (CPT) and quality of life (QOL) was assessed as secondary endpoints. RESULTS: The mean reduction in CSMS in the LPP vs placebo group was -15.5% (P = .041) during the peak period and -17.9% (P = .029) over the entire pollen season. LPP-treated group had a reduced reactivity to CPT (P < .001) and, during the pollen season, a lower rhinoconjunctivitis QOL global score (P = .005) compared with placebo group. Mostly mild and WAO grade 1 early systemic reaction (ESR) were observed ≤30 minutes in 10.5% of LPP-treated patients, whereas 3 patients with a medical history of asthma (<1%) experienced a serious ESR that resolved with rescue medication. CONCLUSION: Lolium perenne pollen peptides administered over 3 weeks before the grass pollen season significantly reduced seasonal symptoms and was generally safe and well-tolerated.
- MeSH
- alergeny aplikace a dávkování imunologie MeSH
- bronchiální astma komplikace imunologie terapie MeSH
- desenzibilizace imunologická * škodlivé účinky metody MeSH
- kvalita života MeSH
- lidé MeSH
- lipnicovité škodlivé účinky MeSH
- peptidy aplikace a dávkování imunologie MeSH
- pyl imunologie MeSH
- roční období MeSH
- rozvrh dávkování léků MeSH
- sezónní alergická rýma komplikace imunologie terapie MeSH
- studie případů a kontrol MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH