Úvod: Práce na pracovištích nukleární medicíny představuje pracovní činnosti, při kterých dochází k expozici ionizujícím zářením. Expozice může být ovlivněna nejen druhem aplikovaného radiofarmaka a jeho aktivitou, ale i způsobem aplikace. Metoda: Práce sleduje a hodnotí výsledky osobní dozimetrie lékařů na pracovišti Oddělení nukleární medicíny Masarykova onkologického ústavu v Brně ovlivněné instrumentací pro aplikaci radiofarmak. Výsledky: Využití instrumentace k aplikaci radiofarmak umožňuje redukci profesního ozáření aplikujících lékařů o více než 90 % v prstové a celotělové dozimetrii. Závěr: Na základě našich zkušeností s instrumentací v nukleární medicíně lze tento princip radiační ochrany (RO) označit za velmi účinný nástroj optimalizace RO také při aplikaci radiofarmak. Takto optimalizovanou RO dochází k posílení bezpečnostních prvků ve vztahu k aplikujícím pracovníkům, čímž se vytváří prostor k možnému navyšování provozu a zvyšování dostupnosti péče v oblasti nukleární medicíny ve vztahu k pacientům.
Introduction: Exposition to radiation is necessarily connected with working at departments of nuclear medicine. The exposure can be influenced by the type of a radiopharmaceutical, its activity and the way of application. Method: This paper analyses the personal dosimetry of physicians at the Department of Nuclear Medicine, Masaryk Memorial Cancer Institute in Brno and evaluates the influence of instrumental application of radiopharmaceuticals on radiation exposure. Results: Use of instrumentation for application of radiopharmaceuticals results in reduction of occupational exposure of physicians by more than 90 % in ring and whole-body dosimetry. Conclusion: Based on our experience with instrumentation at department of nuclear medicine, this principle of radiation protection (RP) has proved to be a very effective tool of RP optimization in application of radiopharmaceuticals. Such optimization of RP reinforces safety elements in relation to the applicating staff, therefore enabling the increase in number of examined patients and increase in availability of nuclear medicine care in relation of patients.
- MeSH
- Safety MeSH
- Radiation Dosage MeSH
- Infusion Pumps * classification MeSH
- Radiation, Ionizing MeSH
- Humans MeSH
- Occupational Diseases prevention & control MeSH
- Nuclear Medicine methods instrumentation statistics & numerical data MeSH
- Radiation Protection methods instrumentation MeSH
- Radiopharmaceuticals * administration & dosage MeSH
- Radiometry methods instrumentation adverse effects statistics & numerical data MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Radiation Dosage MeSH
- Gonads * diagnostic imaging radiation effects MeSH
- Humans MeSH
- Pelvis diagnostic imaging radiation effects MeSH
- Radiation Protection * methods MeSH
- Radiography methods adverse effects MeSH
- Radiation Tolerance radiation effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Radioguidance that makes use of β-emitting radionuclides is gaining in popularity and could have potential to strengthen the range of existing radioguidance techniques. While there is a strong tendency to develop new PET radiotracers, due to favorable imaging characteristics and the success of theranostics research, there are practical challenges that need to be overcome when considering use of β-emitters for surgical radioguidance. In this position paper, the EANM identifies the possibilities and challenges that relate to the successful implementation of β-emitters in surgical guidance, covering aspects related to instrumentation, radiation protection, and modes of implementation.
PURPOSE: The purpose of this paper is to provide an overview of the methodology used to estimate radiation genetic risks and quantify the risk of hereditary effects as outlined in the ICRP Publication 103. It aims to highlight the historical background and development of the doubling dose method for estimating radiation-related genetic risks and its continued use in radiological protection frameworks. RESULTS: This article emphasizes the complexity associated with quantifying the risk of hereditary effects caused by radiation exposure and highlights the need for further clarification and explanation of the calculation method. As scientific knowledge in radiation sciences and human genetics continues to advance in relation to a number of factors including stability of disease frequency, selection pressures, and epigenetic changes, the characterization and quantification of genetic effects still remains a major issue for the radiological protection system of the International Commission on Radiological Protection. CONCLUSION: Further research and advancements in this field are crucial for enhancing our understanding and addressing the complexities involved in assessing and managing the risks associated with hereditary effects of radiation.
- MeSH
- Radiation Dosage MeSH
- Risk Assessment MeSH
- Humans MeSH
- Radiation Exposure adverse effects MeSH
- Radiation Protection * methods MeSH
- Radiation Injuries prevention & control genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Keywords
- Pluvicto,
- MeSH
- Humans MeSH
- Lutetium MeSH
- Prostate-Specific Antigen MeSH
- Radiation Protection * methods MeSH
- Radiopharmaceuticals adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Overall MeSH
The aim of this contribution is to provide an overview of comparison of two types of eye lens dosemeter systems. The comparison was performed at the Department of Intravenous Cardiology using patient and physician phantoms and supplemented by dose simulation using the Monte Carlo method. The tests were performed in several specific geometries and in addition to eye lens dosemeters the value of a personal dosemeter located at the reference point was also monitored. The value of Hp(3) and Hp(10) was monitored. It is clear from the results that film dosemeters achieve more correct results in most cases. It is probably due to a better correction for the angle of exposure. This assumption must be verified by more detailed measurements in laboratory conditions.
- MeSH
- Radiation Dosage MeSH
- Radiology, Interventional methods MeSH
- Cardiology * methods MeSH
- Humans MeSH
- Lens, Crystalline * MeSH
- Occupational Exposure * analysis MeSH
- Radiation Protection * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
During the past 7th Security Framework Program the European Commission funded a research project called CATO (CBRN Crisis management, Architectures, Technologies and Operational procedures) to develop a prototype decision support system for crisis management in addition to providing a suite of guidelines for first responders and incident commanders when dealing with chemical, biological, radiological or nuclear incidents. In order to derive these guidelines a proof-of-concept experiment was setup during which several passive agent (Stable CsCl) dispersions with improvised explosive devices and vehicle-borne improvised explosive devices were carried out. Each dispersion was thoroughly characterised by a number of monitoring devices, including high-volume air samplers and size-segregated air samplers. All environmental and forensic samples were collected by the UK counter terrorism police, following strict labelling and chain-of-custody protocols. The samples were analysed at the Belgian Nuclear Research Center suing the k0 method for instrumental neutron activation technique. A full consequence assessment analysis was carried out assuming that the observed concentration of Cs-133 in samples was Cs-137 instead and use was made of the specific activity of Cs-137. Due to the sensitivity of the information the European Commission classified this research. The resulted reported on in this work have been unclassified and are released to assist emergency planners and first responders to take the necessary precautions. The results indicate that, up to distances of 50 m from ground zero radiation levels will be considerable and therefore live-saving actions must be performed by fire/rescue wearing full protective gear. In addition, low-wind conditions will favor a long airborne residence time and therefore the use of full-face protective gear is a must. In order to protect first responders, a radiation protection specialist is to determine how long people can enter and remain in the contaminated area. The recovery of evidence in the case of a car-bomb will be hard or even impossible due to the high level of radioactive material remaining inside the vehicle.