Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nanotrubičky * chemie MeSH
- povrchové vlastnosti * MeSH
- Pseudomonas aeruginosa * účinky léků MeSH
- Staphylococcus aureus * účinky léků MeSH
- titan * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.
Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.
TiO2 is the most studied photocatalyst because of its non-toxicity, chemical stability, and low cost. However, the problem of TiO2 is its low activity in the visible region of the spectrum. In this study, we focused on the preparation of composite photocatalytic materials with altered light absorption properties. TiO2 P25 and various metal oxides were mechanically joined by ball-milling and immobilized on glass plates. The prepared samples were evaluated based on their ability to degrade NO in gas phase. The formation of undesirable byproducts was also investigated. Four best performing composites were later chosen, characterized, and further evaluated under various conditions. According to their performance, the metal oxide additives can be divided into three groups. P25/Fe2O3 showed the most promising results-an increase in overall deNOx activity under modified ISO conditions and altered selectivity (less NO2 is formed) under both simulated outdoor and simulated indoor conditions. On the other hand, P25/V2O5 composite showed negligible photocatalytic activity. The intermediate group includes P25/WO3 and P25/ZnO photocatalysts, whose performances are similar to those of pristine P25.
As the consumption of implants increases, so do the requirements for individual types of implants, for example, improved biocompatibility or longevity. Therefore, the nano-modification of the titanium surface is often chosen. The aim was to characterize the modified surface with a focus on medical applications. The titanium surface was modified by the anodic oxidation method to form nanotubes. Subsequently, the material was characterized and analyzed for medical applications-surface morphology, surface wettability, chemical composition, and release of ions into biological fluids. A human gingival fibroblasts (HGFb) cell line was used in the viability study. A homogeneous layer of nanotubes of defined dimensions was formed on the titanium surface, ensuring the material's biocompatibility-the preparation conditions influence the resulting properties of the nanostructured surface. Nanostructured titanium exhibited more suitable characteristics (e.g., wettability, roughness, ion release) for biological applications than compared to pure titanium. It was possible to understand the behavior of the modified layer on the titanium surface and its effect on cell behavior. Another contribution of this work is the combination of material characterization (ion release) with the study of cytocompatibility (direct contact of cells with metals).
- MeSH
- fibroblasty MeSH
- lidé MeSH
- nanostruktury * MeSH
- povrchové vlastnosti MeSH
- smáčivost MeSH
- titan * farmakologie chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This research work is focused on the investigation of newly developed titania sol-gel coatings containing silver, calcium and phosphate with appropriate abilities to be implanted into the human body. These abilities include adhesion, bioactivity, antibacterial property and cytocompatibility of prepared coatings. Four types of coatings were applied on a titanium substrate by dip-coating technique under different conditions (TCP1, TCP2, TCPA1 and TCPA2). Surfaces of coatings after the firing without silver featured different distribution of circular areas containing Ca. The coatings TCPA1 and TCPA2 were made up of unhomogeneously situated silver. Adhesion of the coatings to the substrates was measured by a tape test. All types of the coatings demonstrated very good adhesion. Isolated cracks that appeared during the firing did not have a negative influence on the adhesion properties. Bioactivity of the coatings was tested in vitro using a simulated body fluid. Three of the four types demonstrated bioactive properties (TCP1, TCP2 and TCPA2), that is, precipitation of crystalline hydroxyapatite as was confirmed by X-ray diffraction. The antibacterial effect (against Escherichia coli and Staphylococcus epidermidis) and cytotoxicity (toward L929 and U-2 OS cell lines, direct and indirect test) were then tested. All the coatings demonstrated very good antibacterial effect against both bacteria after 4- and 24-hr interaction. All the coating types were evaluated as cytocompatible in the indirect test. Cells were able to grow even directly on the coatings.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- biokompatibilní potahované materiály chemie farmakologie MeSH
- Escherichia coli MeSH
- hydroxyapatit farmakologie MeSH
- lidé MeSH
- stříbro * farmakologie MeSH
- titan * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The demand for biomaterials has been increasing along with the increase in the population of elderly people worldwide. The mechanical properties and high wear resistance of metallic biomaterials make them well-suited for use as substitutes or as support for damaged hard tissues. However, unless these biomaterials also have a low Young's modulus similar to that of human bones, bone atrophy inevitably occurs. Because a low Young's modulus is typically associated with poor wear resistance, it is difficult to realize a low Young's modulus and high wear resistance simultaneously. Also, the superelastic property of shape-memory alloys makes them suitable for biomedical applications, like vascular stents and guide wires. However, due to the low recoverable strain of conventional biocompatible shape-memory alloys, the demand for a new alloy system is high. The novel body-centered-cubic cobalt-chromium-based alloys in this work provide a solution to both of these problems. The Young's modulus of <001>-oriented single-crystal cobalt-chromium-based alloys is 10-30 GPa, which is similar to that of human bone, and they also demonstrate high wear and corrosion resistance. They also exhibit superelasticity with a huge recoverable strain up to 17.0%. For these reasons, the novel cobalt-chromium-based alloys can be promising candidates for biomedical applications.
Recent medical applications have specific requirements on materials and Nitinol can fulfill them due to its exceptional characteristics, which can be further improved by modifications of the material surface. Various surface nanostructuring methods are utilized to enhance characteristics of oxide layer, which naturally develops on the Nitinol surface, leading to improved biocompatibility and corrosion resistance. This review is focused on studies investigating the behavior of various cell types on surface nanotubes and ordered nanopores prepared by anodic oxidation, a technique allowing fabrication of nanostructures with defined parameters. Results showed that certain dimensions of nanotubes positively affect adhesion and viability of osteoblasts and endothelial cells on the surface, contrary to negative effect on smooth muscle cells, both required by the medical applications. Furthermore, increased antibacterial effect correlated with the nanostructure topography and release rates of Ni ions.
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 μg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
- MeSH
- antivirové látky chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- Cercopithecus aethiops MeSH
- COVID-19 prevence a kontrola přenos MeSH
- lidé MeSH
- měď chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- SARS-CoV-2 chemie MeSH
- titan chemie MeSH
- Vero buňky MeSH
- zlato chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.
- MeSH
- alkalická fosfatasa metabolismus MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- fosfor farmakologie MeSH
- keramika MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty fyziologie ultrastruktura MeSH
- osteogeneze účinky léků MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- titan chemie MeSH
- vápník farmakologie MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH