transactivation potential
Dotaz
Zobrazit nápovědu
The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.
p53 is one of the most studied tumor suppressor proteins that plays an important role in basic biological processes including cell cycle, DNA damage response, apoptosis, and senescence. The human TP53 gene contains alternative promoters that produce N-terminally truncated proteins and can produce several isoforms due to alternative splicing. p53 function is realized by binding to a specific DNA response element (RE), resulting in the transactivation of target genes. Here, we evaluated the influence of quadruplex DNA structure on the transactivation potential of full-length and N-terminal truncated p53α isoforms in a panel of S. cerevisiae luciferase reporter strains. Our results show that a G-quadruplex prone sequence is not sufficient for transcription activation by p53α isoforms, but the presence of this feature in proximity to a p53 RE leads to a significant reduction of transcriptional activity and changes the dynamics between co-expressed p53α isoforms.
- MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein - isoformy genetika metabolismus MeSH
- proteiny regulující apoptózu genetika metabolismus MeSH
- protoonkogenní proteiny genetika metabolismus MeSH
- responzivní elementy genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.
- MeSH
- apoptóza genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- membránové proteiny genetika ultrastruktura MeSH
- nádorový supresorový protein p53 genetika ultrastruktura MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein p73 genetika ultrastruktura MeSH
- proteiny regulující apoptózu genetika MeSH
- protoonkogenní proteiny genetika MeSH
- responzivní elementy genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A focal adenomatoid-microcystic pattern is not uncommon in peritoneal mesothelioma, but tumors composed almost exclusively of this pattern are distinctly rare and have not been well characterized. A small subset of mesotheliomas (mostly in children and young adults) are characterized by gene fusions including EWSR1/FUS::ATF1, EWSR1::YY1, and NTRK and ALK rearrangements, and often have epithelioid morphology. Herein, we describe five peritoneal mesothelial neoplasms (identified via molecular screening of seven histologically similar tumors) that are pure adenomatoid/microcystic in morphology and unified by the presence of an NR4A3 fusion. Patients were three males and two females aged 31-70 years (median, 40 years). Three presented with multifocal/diffuse and two with a localized disease. The size of the individual lesions ranged from 1.5 to 8 cm (median, 4.7). The unifocal lesions originated in the small bowel mesentery and the mesosigmoid. Treatment included surgery, either alone (three) or combined with hyperthermic intraperitoneal chemotherapy (two), and neoadjuvant or adjuvant chemotherapy (one case each). At the last follow-up (6-13 months), all five patients were alive and disease-free. All tumors were morphologically similar, characterized by extensive sieve-like microcystic growth with bland-looking flattened cells lining variably sized microcystic spaces and lacked a conventional epithelioid or sarcomatoid component. Immunohistochemistry confirmed mesothelial differentiation, but most cases showed limited expression of D2-40 and calretinin. Targeted RNA sequencing revealed an NR4A3 fusion (fusion partners were EWSR1 in three cases and CITED2 and NIPBL in one case each). The nosology and behavior of this morphomolecularly defined novel peritoneal mesothelial neoplasm of uncertain biological potential and its distinction from adenomatoid variants of conventional mesothelioma merit further delineation as more cases become recognized.
- MeSH
- adenom * MeSH
- DNA vazebné proteiny genetika MeSH
- dospělí MeSH
- fúze genů MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenterium patologie MeSH
- mezoteliom * genetika MeSH
- nádorové biomarkery genetika MeSH
- peritoneální nádory * genetika patologie MeSH
- proteiny buněčného cyklu genetika MeSH
- receptory thyreoidních hormonů genetika MeSH
- represorové proteiny genetika MeSH
- senioři MeSH
- steroidní receptory * genetika MeSH
- trans-aktivátory genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mesenchymal stem cells have the ability to differentiate into insulin-producing cells, raising the hope for diabetes mellitus treatment. The aim of this research was to study the ability of stem cells from discarded natal teeth to differentiate into insulinproducing cells. Two vital human natal teeth were obtained from a healthy 2-day-old female. Stem cells from the dental pulp were isolated, cultured under xenogenic-free conditions, propagated and characterized. Proliferative activity, population doubling time and viability were measured, and the multipotent differentiation ability was investigated. A twostep protocol was used to induce the human natal dental pulp stem cells to differentiate into insulinproducing cells. Phenotypic analysis was done using flow cytometry. Immunohistochemistry was performed to detect insulin and C-peptide. PDX1, HES1 and Glut2 gene expression analysis was performed by quantitative reverse transcription-polymerase chain reaction. Human natal dental pulp stem cells were able to undergo osteogenic, chondrogenic and adipogenic differentiation upon exposure to the specific differentiation media for each lineage. Their differentiation into insulin-producing cells was confirmed by expression of C-peptide and insulin, as well as by 975.4 % higher expression of PDX-1 and 469.5 % higher expression of HES1 in comparison to the cells cultivated in standard cultivation media. Glut2 transporter mRNA was absent in the non-differentiated cells, and differentiation of the stem cells into insulin-producing cells induced appearance of the mRNA of this transporter. We were the first to demonstrate that stem cells obtained from the pulp of natal teeth could be differentiated into insulinproducing cells, which might prove useful in the stem cell therapy for type 1 diabetes.
- MeSH
- beta-buňky cytologie metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- C-peptid metabolismus MeSH
- diabetes mellitus 1. typu metabolismus MeSH
- homeodoménové proteiny metabolismus MeSH
- imunohistochemie MeSH
- inzulin metabolismus MeSH
- kmenové buňky cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- průtoková cytometrie MeSH
- trans-aktivátory metabolismus MeSH
- transkripční faktor HES1 metabolismus MeSH
- zubní dřeň cytologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Essential oils (EOs) of culinary herbs and spices are consumed on a daily basis. They are multicomponent mixtures of compounds with already demonstrated biological activities. Taking into account regular dietary intake and the chemical composition of EOs, they may be considered as candidates for endocrine-disrupting entities. Therefore, we examined the effects of 31 EOs of culinary herbs and spices on transcriptional activities of glucocorticoid receptor (GR), androgen receptor (AR) and vitamin D receptor (VDR). Using reporter gene assays in stably transfected cell lines, weak anti-androgen and anti-glucocorticoid activity was observed for EO of vanilla and nutmeg, respectively. Moderate augmentation of calcitriol-dependent VDR activity was caused by EOs of ginger, thyme, coriander and lemongrass. Mixed anti-glucocorticoid and VDR-stimulatory activities were displayed by EOs of turmeric, oregano, dill, caraway, verveine and spearmint. The remaining 19 EOs were inactive against all receptors under investigation. Analyses of GR, AR and VDR target genes by means of RT-PCR confirmed the VDR-stimulatory effects, but could not confirm the anti-glucocorticoid and anti-androgen effects of EOs. In conclusion, although we observed minor effects of several EOs on transcriptional activities of GR, AR and VDR, the toxicological significance of these effects is very low. Hence, 31 EOs of culinary herbs and spices may be considered safe, in terms of endocrine disruption involving receptors GR, AR and VDR.
- MeSH
- aktivace transkripce účinky léků MeSH
- androgenní receptory chemie metabolismus MeSH
- androgeny škodlivé účinky MeSH
- antagonisté androgenů škodlivé účinky MeSH
- endokrinní disruptory škodlivé účinky MeSH
- jedlé rostliny chemie MeSH
- koření * MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- oleje prchavé škodlivé účinky MeSH
- receptory glukokortikoidů agonisté antagonisté a inhibitory genetika metabolismus MeSH
- receptory kalcitriolu agonisté antagonisté a inhibitory genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- reportérové geny účinky léků MeSH
- reprodukovatelnost výsledků MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
The Gal4 protein is a well-known prototypic acidic activator that has multiple activation domains. We have previously identified a new activation domain called the nine amino acid transactivation domain (9aaTAD) in Gal4 protein. The family of the 9aaTAD activators currently comprises over 40 members including p53, MLL, E2A and other members of the Gal4 family; Oaf1, Pip2, Pdr1 and Pdr3. In this study, we revised function of all reported Gal4 activation domains. Surprisingly, we found that beside of the activation domain 9aaTAD none of the previously reported activation domains had considerable transactivation potential and were not involved in the activation of transcription. Our results demonstrated that the 9aaTAD domain is the only decisive activation domain in the Gal4 protein. We found that the artificial peptides included in the original Gal4 constructs were results of an unintended consequence of cloning that were responsible for the artificial transcriptional activity. Importantly, the activation domain 9aaTAD, which is the exclusive activation domain in Gal4, is also the central part of a conserved sequence recognized by the inhibitory protein Gal80. We propose a revision of the Gal4 regulation, in which the activation domain 9aaTAD is directly linked to both activation function and Gal80 mediated inhibition.
- MeSH
- aktivace transkripce genetika fyziologie MeSH
- DNA vazebné proteiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- proteinové domény MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- transkripční faktory chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Proper timing of degradation of maternal protein reserves is important for early embryonic development. The major modification that triggers proteins to degradation is ubiquitination, mediated by ubiquitin-proteolytic system. We focus here on Skp 1-Cul 1-F-box complex (SCF-complex), E3 ubiquitin-ligase, a part of ubiquitin-proteolytic system, which transfer ubiquitin to the substrate protein. We describe in this chapter the methods for the characterization of the expression profile of mRNA and protein of invariant members of SCF-complex and for the definition of SCF-complex activity.
- MeSH
- aktivace transkripce MeSH
- embryonální vývoj * MeSH
- proteinligasy komplexu SCF metabolismus MeSH
- proteolýza MeSH
- skot MeSH
- stanovení celkové genové exprese MeSH
- ubikvitinligasy metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH