Evolutionary trends
Dotaz
Zobrazit nápovědu
Symposia biologica Hungarica ; vol. 9
140 s. : il.
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com . The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1-74 for 5S and 1-54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (> 75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.
Nineteen species of various families of the order Diptera and one species from the order Mecoptera are investigated with mass spectrometry for the presence and primary structure of putative adipokinetic hormones (AKHs). Additionally, the peptide structure of putative AKHs in other Diptera are deduced from data mining of publicly available genomic or transcriptomic data. The study aims to demonstrate the structural biodiversity of AKHs in this insect order and also possible evolutionary trends. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. The corpora cardiaca of almost all dipteran species contain AKH octapeptides, a decapeptide is an exception found only in one species. In general, the dipteran AKHs are order-specific- they are not found in any other insect order with two exceptions only. Four novel AKHs are revealed by mass spectrometry: two in the basal infraorder of Tipulomorpha and two in the brachyceran family Syrphidae. Data mining revealed another four novel AKHs: one in various species of the infraorder Culicumorpha, one in the brachyceran superfamily Asiloidea, one in the family Diopsidae and in a Drosophilidae species, and the last of the novel AKHs is found in yet another Drosophila. In general, there is quite a biodiversity in the lower Diptera, whereas the majority of the cyclorraphan Brachycera produce the octapeptide Phote-HrTH. A hypothetical molecular peptide evolution of dipteran AKHs is suggested to start with an ancestral AKH, such as Glomo-AKH, from which all other AKHs in Diptera to date can evolve via point mutation of one of the base triplets, with one exception.
- MeSH
- chromatografie kapalinová MeSH
- Diptera chemie klasifikace genetika metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hmyzí hormony analýza chemie genetika metabolismus MeSH
- kyselina pyrrolidonkarboxylová analogy a deriváty analýza chemie metabolismus MeSH
- molekulární evoluce * MeSH
- oligopeptidy analýza chemie genetika metabolismus MeSH
- peptidy analýza chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Malacosporeans represent a small fraction of myxozoan biodiversity with only two genera and three species described. They cycle between bryozoans and freshwater fish. In this study, we (i) microscopically examine and screen different freshwater/marine fish species from various geographic locations and habitats for the presence of malacosporeans using PCR; (ii) study the morphology, prevalence, host species/habitat preference and distribution of malacosporeans; (iii) perform small subunit/large subunit rDNA and Elongation factor 2 based phylogenetic analyses of newly gathered data, together with all available malacosporean data in GenBank; and (iv) investigate the evolutionary trends of malacosporeans by mapping the morphology of bryozoan-related stages, host species, habitat and geographic data on the small subunit rDNA-based phylogenetic tree. We reveal a high prevalence and diversity of malacosporeans in several fish hosts in European freshwater habitats by adding five new species of Buddenbrockia and Tetracapsuloides from cyprinid and perciform fishes. Comprehensive phylogenetic analyses revealed that, apart from Buddenbrockia and Tetracapsuloides clades, a novel malacosporean lineage (likely a new genus) exists. The fish host species spectrum was extended for Buddenbrockia plumatellae and Buddenbrockia sp. 2. Co-infections of up to three malacosporean species were found in individual fish. The significant increase in malacosporean species richness revealed in the present study points to a hidden biodiversity in this parasite group. This is most probably due to the cryptic nature of malacosporean sporogonic and presporogonic stages and mostly asymptomatic infections in the fish hosts. The potential existence of malacosporean life cycles in the marine environment as well as the evolution of worm- and sac-like morphology is discussed. This study improves the understanding of the biodiversity, prevalence, distribution, habitat and host preference of malacosporeans and unveils their evolutionary trends.
- MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- elongační faktor 2 genetika MeSH
- molekulární sekvence - údaje MeSH
- Myxozoa klasifikace cytologie genetika MeSH
- protozoální DNA genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální genetika MeSH
- ryby parazitologie MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Thanks to high species diversity and a broad range of speciation mechanisms, cichlid fishes represent a textbook model in evolutionary biology. They are also of substantial economic value. Despite this importance, cichlid parasites remain understudied, although some are more diverse than their hosts. They may offer important insights into cichlid evolution and the evolution of host-parasite interactions. We review five major lines of research conducted on cichlid parasites so far: the study of parasite diversity and speciation; the role of parasites in cichlid diversification; the evolutionary ecology of host specificity; historical biogeography; and biological invasions. We call for more research in these areas and suggest approaches to valorise the potential that cichlid parasites hold for the study of evolutionary parasitology.
Autori podávajú prehľad o súčasných ventilačných terapeutických metódach používaných v spánkovej medicíne a naznačujú nové smery rozvoja v tejto rýchlo sa rozvíjajúcej oblasti. Osobitnú pozornosl venujú liečebným technikám spánkových porúch dýchania založených na aplikácii trvalého pozitívneho tlaku do horných dýchacích ciest špeciálnymi prístrojmi prostredníctvom nazálnej masky (nCPAP). Ich typickými predstaviteľmi sú modely Tranquility firmy Healthdyne, Sulilvan III firmy Rescare. Bi level nCPAP (BiPAP) firmy Respironics, Self titrating nCPAP firmy Sefam, on demand nCPAP (DPAP Stealth) firmy SleepNet a nový autotitračný nCPAP systém Sullivan (AutoSet) firmy Rescare. Práca podrobne vysvetľuje princípy funkcie všetkých známych vývojových generácií týchto prístrojov a zhrňuje vlastné skúsenosti s ich používaním.
Authors present a review of contemporary ventilatory therapeutic methods used in sleep medicine. They indicate new trends of development in this quickly evolving field. Special attentions are devoted to therapeutic methods of sleep disordered breathing based on application of continuous positive airway pressure to upper airways by means of special equipments using nasal masks (nCPAP). These are represented by the models Tranquility (of the firm Healthdyne), Sullivan III (firm Rescare), Bi level nCPAP (BiPAP, firm Respironics), Self titrating nCPAP (firm Sefam), on deman nCPAP (DPAP, DPAP Stealth, firm SleepNet), and the new autotitrating nCPAP Sullivan system (AutoSet, firm Rescare). The paper explains in detail the principles of functioning of all evolutionary generations of these equipments including own experiences of the authors with its use.
- MeSH
- syndromy spánkové apnoe patofyziologie terapie MeSH
- ventilace umělá s výdechovým přetlakem metody trendy MeSH
- Publikační typ
- přehledy MeSH
The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets.IMPORTANCE The results of this study indicate a discordance between gut microbiome composition and evolutionary history in primates, calling into question previous notions about host genetic control of the primate gut microbiome. Microbiome similarities between humans consuming nonindustrialized diets and monkeys characterized by subsisting on eclectic, omnivorous diets also raise questions about the ecological and nutritional drivers shaping the human gut microbiome. Moreover, a more detailed understanding of the factors associated with gut microbiome plasticity in primates offers a framework to understand why humans following industrialized lifestyles have deviated from states thought to reflect human evolutionary history. The results also provide perspectives for developing therapeutic dietary manipulations that can reset configurations of the gut microbiome to potentially improve human health.
- MeSH
- Bacteria klasifikace izolace a purifikace MeSH
- dieta * MeSH
- feces mikrobiologie MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- primáti mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * MeSH
- životní styl MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
The Cyprinidae family is a highly diversified but demonstrably monophyletic lineage of cypriniform fishes. Among them, the genus Osteochilus contains 35 recognized valid species distributed from India, throughout Myanmar, Laos, Thailand, Malaysia, Indonesian archipelago to southern China. In this study, karyotypes and other chromosomal characteristics of five Osteochilus species occurring in Thailand, namely O. lini, O. melanopleura, O. microcephalus, O. vittatus and O. waandersii were examined using conventional and molecular cytogenetic protocols. Our results showed they possessed diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive chromosomal rearrangements. Only one chromosome pair bearing 5S rDNA sites occurred in most species, except O. melanopleura, where two sites were detected. In contrast, only one chromosomal pair bearing 18S rDNA sites were observed among their karyotypes, but in different positions. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these Osteochilus species were largely corresponding to the inferred phylogenetic tree. Similarly, different patterns of the distributions of rDNAs and microsatellites across genomes of examined species as well as their different karyotype structures indicated significant evolutionary differentiation of Osteochilus genomes.
- Publikační typ
- časopisecké články MeSH
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
- MeSH
- Arabidopsis genetika fyziologie MeSH
- Brassica genetika fyziologie MeSH
- Brassicaceae genetika fyziologie MeSH
- fylogeneze MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- sekvenční analýza DNA MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
- MeSH
- COVID-19 * genetika MeSH
- lidé MeSH
- mutace MeSH
- mutageneze MeSH
- nukleotidy MeSH
- SARS-CoV-2 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH