BMP4
Dotaz
Zobrazit nápovědu
- MeSH
- DNA vazebné proteiny fyziologie MeSH
- erytroidní prekurzorové buňky cytologie MeSH
- fosfoproteiny antagonisté a inhibitory fyziologie MeSH
- hematopoetické kmenové buňky chemie MeSH
- kostní morfogenetické proteiny MeSH
- lidé MeSH
- myelodysplastické syndromy metabolismus patologie MeSH
- transaktivátory fyziologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
OBJECTIVE: To identify expression profiles (EP) associated with aseptic loosening of total knee arthroplasty (TKA) and to compare them with EP observed in total hip arthroplasty (THA), and primary knee and hip osteoarthritis (OA). DESIGN: Gene EP of TNF, IL-6, IL-8, CHIT1, BMP4, CCL3, CCL18, MMP9, RANKL, OPG, DC-STAMP and SOCS3 were assessed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on tissues retrieved from patients with aseptically failed TKA (n = 21), THA (n = 41) and primary knee (n = 20) and hip (n = 17) OA. Immunohistochemistry was applied to localize the proteins. RESULTS: When compared to knee OA, the pseudosynovial tissue in TKA exhibit (1) elevation of alternative macrophage activation marker (CHIT1), chemokine (IL-8), and a proteolytic enzyme (MMP9); (2) downregulation of pro-inflammatory cytokine (TNF), osteoclastic regulator (OPG) and a stimulator of bone formation (BMP4); (3) no difference in IL-6, CCL3, CCL18, RANKL, DC-STAMP and SOCS3. The EP in TKA differed from EP in aseptically failed THA by lower CCL3 and DC-STAMP mRNA and protein expression. EP of all studied inflammatory and osteoclastogenic molecules were similar in knee and hip OA. CONCLUSIONS: Comparing to OA, aseptic loosening of TKA is associated with upregulated expression of CHIT1, IL-8 and MMP9, dysregulated RANKL:OPG ratio and low levels of inflammatory cytokines. Similar cytokine profiles were associated with primary knee and hip OA. Further research is required to explain the differences in CCL3 and DC-STAMP expression between failed TKA and THA.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- artroplastiky kloubů metody MeSH
- artróza kolenních kloubů genetika metabolismus chirurgie MeSH
- artróza kyčelních kloubů genetika metabolismus chirurgie MeSH
- chemokin CCL3 biosyntéza genetika MeSH
- cytokiny biosyntéza genetika MeSH
- imunohistochemie MeSH
- kolenní kloub metabolismus chirurgie MeSH
- kyčelní kloub metabolismus chirurgie MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- messenger RNA genetika MeSH
- náhrada kyčelního kloubu MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- regulace genové exprese * MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- totální endoprotéza kolene MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.
- MeSH
- abnormality čelisti genetika patologie MeSH
- dánio pruhované MeSH
- exom genetika MeSH
- HeLa buňky MeSH
- homeodoménové proteiny biosyntéza genetika MeSH
- kostní morfogenetický protein 4 genetika MeSH
- lidé MeSH
- mezoderm metabolismus MeSH
- morfolino MeSH
- mozek abnormality patologie MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny dánia pruhovaného genetika MeSH
- rozštěp patra genetika patologie MeSH
- rozštěp rtu genetika patologie MeSH
- transkripční faktory biosyntéza genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Epithelial-mesenchymal interaction between stromal fibroblasts and cancer cells influences the functional properties of tumor epithelium, including the tumor progression and spread. We compared fibroblasts prepared from stroma of squamous cell carcinoma and normal dermal fibroblasts concerning their biological activity toward normal keratinocytes assessed by immunocytochemistry and profiling of gene activation for growth factors/cytokines by microarray chip technology. IGF-2 and BMP-4 were determined as candidate factors responsible for tumor-associated fibroblast activity that influences normal epithelia. This effect was confirmed by addition of recombinant IGF-2 and BMP4, respectively, to the culture medium. This hypothesis was also verified by inhibition experiments where blocking antibodies were employed in the medium conditioned by cancer-associated fibroblast. Presence of these growth factors was also detected in tumor samples.
- MeSH
- buňky NIH 3T3 MeSH
- čipová analýza proteinů MeSH
- fenotyp MeSH
- fibroblasty metabolismus MeSH
- imunohistochemie MeSH
- insulinu podobný růstový faktor II biosyntéza MeSH
- keratinocyty cytologie metabolismus MeSH
- kostní morfogenetický protein 4 biosyntéza MeSH
- lidé MeSH
- myši MeSH
- nádory hlavy a krku metabolismus patologie MeSH
- rekombinantní proteiny biosyntéza MeSH
- spinocelulární karcinom metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neural crest cells (NCCs) derive early in vertebrate ontogenesis from neural tube as a population of migratory cells with exquisite differentiation potential. Abnormalities in NCC behaviour are cause of debilitating diseases including cancers and a spectrum of neurocristopathies. Thanks to their multilineage differentiation capacity NCCs offer a cell source for regenerative medicine. Both these aspects make NCC biology an important issue to study, which can currently be addressed using methodologies based on pluripotent stem cells. Here we contributed to understanding the biology of human NCCs by refining the protocol for differentiation/propagation of NCClike cells from human embryonic stem cells and by characterizing the molecular and functional phenotype of such cells. Most importantly, we improved formulation of media for NCC culture, we found that poly-L-ornithine combined with fibronectin provide good support for NCC growth, we unravelled the tendency of cultured NCCs to maintain heterogeneity of CD271 expression, and we showed that NCCs derived here possess the capacity to react to BMP4 signals by dramatically up-regulating MSX1, which is linked to odontogenesis.
- MeSH
- adapalen MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace * účinky léků MeSH
- crista neuralis cytologie účinky léků metabolismus MeSH
- embryonální kmenové buňky cytologie účinky léků metabolismus MeSH
- fenotyp MeSH
- kostní morfogenetický protein 4 farmakologie MeSH
- lidé MeSH
- naftaleny metabolismus MeSH
- polymerázová řetězová reakce MeSH
- průtoková cytometrie MeSH
- transkripční faktor MSX1 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Drugs are excreted from the human body as both original substances and as metabolites and enter aquatic environment through waste water. The aim of this study was to widen the current knowledge considering the effects of waterborne antidepressants with different modes of action-amitriptyline, venlafaxine, sertraline-on embryos of non-target aquatic biota-fish (represented by Danio rerio) and amphibians (represented by Xenopus tropicalis). The tested concentrations were 0.3; 3; 30; 300 and 3000 μg/L in case of amitriptyline and venlafaxine and 0.1; 1; 10; 100 and 1000 μg/L for sertraline. Test on zebrafish embryos was carried out until 144 h post fertilization, while test on Xenopus embryos was terminated after 48 h. Lethal and sublethal effects as well as swimming alterations were observed at higher tested concentrations that are not present in the environment. In contrast, mRNA expression of genes related to heart, eye, brain and bone development (nkx2.5, otx 2, bmp4 and pax 6) seems to be impacted also at environmentally relevant concentrations. In a wider context, this study reveals several indications on the ability of antidepressants to affect non target animals occupying environments which may be contaminated by such compounds.
TGF-beta superfamily members including bone morphogenetic proteins (BMPs) and their receptors (BMPR-1A, -1B and -2) have been shown to be important for reproductive function in both males and females, while information on the role of BMPs in males is limited. Functional studies on select BMPs and BMP receptors have demonstrated vital roles for these proteins in somatic and germ cell proliferation, steroidogenesis and overall fertility. In order to gain insight into the importance of these genes during postnatal reproductive development in males, our study was undertaken to specify the distribution of BMP and BMPR mRNA in male reproductive and steroidogenic tissues and quantify these genes in the testis using the mouse as our model. We screened testis at two, four, six and eight weeks of age for the expression of ten BMPs and three BMP receptors using RT-qPCR. All three BMP receptor mRNAs - Bmpr1a, Bmpr1b and Bmpr2, and ten BMP mRNAs - Bmp2, Bmp3, Bmp3b, Bmp4, Bmp5, Bmp6, Bmp7, Bmp8a, Bmp8b and Bmp15 were expressed in mouse testis at all stages screened. Testicular expression of genes varied within age groups and at specific developmental stages. Our study establishes an extensive BMP system in mouse reproductive and steroidogenic tissues.
- MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- myši MeSH
- receptory kostního morfogenetického proteinu metabolismus MeSH
- semenné váčky růst a vývoj MeSH
- stárnutí metabolismus MeSH
- testis růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
BACKGROUND: Microdeletions of 14q22q23 have been associated with eye abnormalities and pituitary defects. Other phenotypic features in deletion carriers including hearing loss and response to growth hormone therapy are less well recognized. We studied genotype and phenotype of three newly identified children with 14q22q23 deletions, two girls and one boy with bilateral anophthalmia, and compared them with previously published deletion patients and individuals with intragenic defects in genes residing in the region. RESULTS: The three deletions were de novo and ranged in size between 5.8 and 8.9 Mb. All three children lacked one copy of the OTX2 gene and in one of them the deletion involved also the BMP4 gene. All three patients presented partial conductive hearing loss which tended to improve with age. Analysis of endocrine and growth phenotypes showed undetectable anterior pituitary, growth hormone deficiency and progressive growth retardation in all three patients. Growth hormone therapy led to partial catch-up growth in two of the three patients but just prevented further height loss in the third. CONCLUSIONS: The pituitary hypoplasia, growth hormone deficiency and growth retardation associated with 14q22q23 microdeletions are very remarkable, and the latter appears to have an atypical response to growth hormone therapy in some of the cases.
- MeSH
- anoftalmie * MeSH
- chromozomální delece * MeSH
- hypofýza * abnormality MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 14 * MeSH
- mnohočetné abnormality * MeSH
- novorozenec MeSH
- růstový hormon * terapeutické užití MeSH
- transkripční faktory Otx MeSH
- ucho * abnormality MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Material-induced ossification is suggested as a suitable approach to heal large bone defects. Fiber-reinforced composite-bioactive glasses (FRC-BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC-BG implant in vivo from the perspective of material-induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly-formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC-BG, we cultured human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2 O3 control. AD-MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro-osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC-BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC-BG implant demonstrated material-induced ossification both in vitro and in vivo.
- MeSH
- biokompatibilní materiály aplikace a dávkování MeSH
- lebka zranění metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- osteogeneze účinky léků MeSH
- protézy a implantáty * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- práce podpořená grantem MeSH
In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination.
- MeSH
- crista neuralis cytologie metabolismus MeSH
- embryo nesavčí metabolismus MeSH
- kopinatci embryologie metabolismus MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- messenger RNA metabolismus MeSH
- Oryzias embryologie metabolismus MeSH
- rozvržení tělního plánu MeSH
- signální transdukce * MeSH
- zpětná vazba fyziologická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH