Breeding programme
Dotaz
Zobrazit nápovědu
Climate change and population growth are putting increasing pressure on global food security. The development of high-yielding varieties for important crops such as wheat is crucial to meet these challenges. The basis for this is extensive exploitation of beneficial genetic variation resting in genebanks around the world. Selecting suitable donor genotypes from the vast number of wheat accessions stored in genebanks is a difficult task and depends critically on the density of information on the performance of individual accessions. Therefore, this study aimed to access phenotypic data from the Czech genebank, storing over 13,000 wheat accessions. We curated and analyzed data on heading date, plant height, and thousand grain weight for more than one-third of all available accessions regenerated across 70 years. The data underwent analysis using a linear mixed model, revealing high quality of curated data with heritability reaching 99%. The raw data, but also derived data such as the best linear unbiased estimations, are now available for the wheat collection of the Czech genebank for research and breeding.
- MeSH
- fenotyp * MeSH
- genetická variace MeSH
- genotyp MeSH
- pšenice * genetika MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals.
- MeSH
- 2D gelová elektroforéza MeSH
- albuminy chemie genetika metabolismus MeSH
- chléb analýza MeSH
- gliadin chemie genetika MeSH
- globuliny chemie genetika MeSH
- gluteny chemie genetika MeSH
- jedlá semena chemie genetika MeSH
- lidé MeSH
- obilninové proteiny chemie klasifikace MeSH
- proteom genetika MeSH
- pšenice chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS: Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS: The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.
- MeSH
- chov MeSH
- genom rostlinný * MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus genetika MeSH
- Malus genetika MeSH
- rodokmen MeSH
- sekvenování celého genomu MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
KEY MESSAGE: Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.
- MeSH
- Aegilops genetika MeSH
- Basidiomycota růst a vývoj patogenita MeSH
- chromozomy rostlin MeSH
- fenotyp MeSH
- genetické markery MeSH
- genová introgrese MeSH
- jednonukleotidový polymorfismus MeSH
- listy rostlin genetika mikrobiologie MeSH
- mapování chromozomů MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika mikrobiologie MeSH
- rekombinace genetická MeSH
- rostlinné geny MeSH
- šlechtění rostlin MeSH
- telomery genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- MeSH
- flavonoidy biosyntéza chemie metabolismus MeSH
- genová ontologie MeSH
- Humulus chemie metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- propiofenony chemie metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenování transkriptomu MeSH
- terpeny chemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transkriptom genetika MeSH
- trichomy genetika metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
Plant-rhizobia symbiosis can activate key genes involved in regulating nodulation associated with biological nitrogen fixation (BNF). Although the general molecular basis of the BNF process is frequently studied, little is known about its intraspecific variability and the characteristics of its allelic variants. This study's main goals were to describe phenotypic and genotypic variation in the context of nitrogen fixation in red clover (Trifolium pretense L.) and identify variants in BNF candidate genes associated with BNF efficiency. Acetylene reduction assay validation was the criterion for selecting individual plants with particular BNF rates. Sequences in 86 key candidate genes were obtained by hybridization-based sequence capture target enrichment of plants with alternative phenotypes for nitrogen fixation. Two genes associated with BNF were identified: ethylene response factor required for nodule differentiation (EFD) and molybdate transporter 1 (MOT1). In addition, whole-genome population genotyping by double-digest restriction-site-associated sequencing (ddRADseq) was performed, and BNF was evaluated by the natural 15N abundance method. Polymorphisms associated with BNF and reflecting phenotype variability were identified. The genetic structure of plant accessions was not linked to BNF rate of measured plants. Knowledge of the genetic variation within BNF candidate genes and the characteristics of genetic variants will be beneficial in molecular diagnostics and breeding of red clover.
- MeSH
- alely MeSH
- fenotyp MeSH
- fixace dusíku genetika MeSH
- genotyp MeSH
- interakce mikroorganismu a hostitele MeSH
- kořeny rostlin genetika mikrobiologie MeSH
- polymorfismus genetický * MeSH
- Rhizobium fyziologie MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza DNA metody MeSH
- symbióza genetika MeSH
- Trifolium genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisumsativum, P.abyssinicum) and wild (P.fulvum and P.elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P.sativum and P.elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
- MeSH
- acetyl-CoA-karboxylasa genetika MeSH
- alely * MeSH
- buněčné jádro genetika metabolismus MeSH
- cytoplazma genetika metabolismus MeSH
- domestikace MeSH
- fylogeneze MeSH
- hrách setý genetika metabolismus MeSH
- plastidy genetika metabolismus MeSH
- reprodukční izolace MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Background and Aims: Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. Methods: The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent β-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Key Results: Differences in basal expression levels of defensins, germins, β-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. Conclusions: The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.
- MeSH
- aminobutyráty farmakologie MeSH
- Ascomycota fyziologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- nemoci rostlin imunologie mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvenční analýza DNA MeSH
- seskviterpeny farmakologie MeSH
- Solanum lycopersicum genetika imunologie mikrobiologie MeSH
- Solanum genetika imunologie mikrobiologie MeSH
- upregulace MeSH
- Publikační typ
- časopisecké články MeSH
Of 34 breeds kept in the Czech Republic 45,604 sheep were genotyped for codons 136, 154 and 171 in the prion protein gene (PRNP) during the years 2006-2014. In this cohort, haplotypes ARR, ARQ, ARH, AHQ, VRQ, AHR and ARK were detected. The haplotype AF141RQ associated with susceptibility to atypical scrapie was observed in nine out of 30 breeds analysed for this purpose. In addition, six rare nonsynonymous substitutions producing haplotypes AT137RQ, AN138RQ, AG151RQ, AH151RQ, ARL168Q and ARQE175 were identified in various breeds. Due to their low frequencies, these polymorphisms are of no potential importance for the breeding programme. With regard to their genetic particularity, Sumavka, Valachian and Cameroon breeds were screened for additional polymorphisms. Further haplotypes, AR143RQ and AS146RQ, were found in Sumavka and Cameroon, and in Valachian sheep, respectively. Frequencies of the ARR (resistance-associated), VRQ (susceptibility-associated) haplotypes, and of the most resistant ARR/ARR genotype calculated for sheep born in the years 2001-2003 and 2011-2013 documented effects of the 10 year-lasting national breeding programme. The total frequency of ARR doubled from 36.8 to 75.8 %, while the frequency of VRQ decreased from 4 to 0.7 %. The total frequency of the ARR/ARR genotype increased from 17.7 to 59 %. These data show that the national scrapie resistance breeding programme has had an important desirable effect on haplotype and genotype frequencies of PRNP in Czech sheep.
- MeSH
- chov MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci * MeSH
- genotyp MeSH
- haplotypy MeSH
- ovce domácí genetika MeSH
- polymorfismus genetický MeSH
- prionová bílkovina genetika MeSH
- scrapie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH