Hubatka, F*
Dotaz
Zobrazit nápovědu
Background and aims: The majority of colorectal cancers arise from detectable adenomatous or serrated lesions. Here we demonstrate how deregulated alternative splicing of CD44 gene in diseased colon mucosa results in downregulation of standard isoform of CD44 gene (CD44s) and upregulation of variant isoform CD44v8-10. Our aim is to show that upregulation of CD44v8-10 isoform is a possible marker of precancerous lesion in human colon. Methods: We analysed pairs of fresh biopsy specimen of large intestine in a cohort of 50 patients. We studied and compared alternative splicing profile of CD44 gene in colon polyps and adjoined healthy colon mucosa. We performed end-point and qRT PCR, western blotting, IHC staining and flow cytometry analyses. Results: We detected more than five-fold overexpression of CD44v8-10 isoform and almost twenty-fold downregulation of standard isoform CD44s in colon polyps compared to adjoined healthy tissue with p = 0.018 and p < 0.001 in a cohort of 50 patients. Our results also show that aberrant splicing of CD44 occurs in both biologically distinct subtypes of colorectal adenoma possibly in ESRP-1 specific manner. Conclusion: 92% of the colon polyp positive patients overexpressed CD44v8-10 isoform in their colon polyps while only 36% of them had positive fecal occult blood test which is currently a standard non-invasive screening technique. Impact: We believe that our results are important for further steps leading to application of CD44v8-10 isoform as a biomarker of colorectal precancerosis in non-invasive detection. Early detection of colon precancerosis means successful prevention of colorectal carcinoma.
- MeSH
- antigeny CD44 genetika metabolismus MeSH
- kolon metabolismus patologie MeSH
- kolorektální nádory diagnóza genetika metabolismus MeSH
- lidé MeSH
- nádorové biomarkery genetika metabolismus MeSH
- polypy tlustého střeva metabolismus patologie MeSH
- prognóza MeSH
- protein - isoformy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Micro-computed tomography (micro-CT) is an exceptional imaging modality which is limited in visualizing soft biological tissues that need pre-examination contrasting steps, which can cause serious deformation to sizeable specimens like engorged ticks. The aim of this study was to develop a new technique to bypass these limitations and allow the imaging of fed ticks in their natural state. To accomplish this, adult Ixodes ricinus females were allowed to engorge in vitro on blood supplemented with PEGylated gold nanoparticles (PEG-AuNPs). In total, 73/120 females divided into 6 groups engorged on blood enriched with 0.07-2.16 mg PEG-AuNPs per ml of blood. No toxic effect was observed for any of the tested groups compared to the control group, in which 12/20 females engorged on clear blood. The ticks were scanned on a Bruker micro-CT SkyScan 1276. The mean radiodensity of the examined ticks exceeded 0 Hounsfield Units only in the case of the two groups with the highest concentration. The best contrast was observed in ticks engorged on blood with the highest tested concentration of 2.16 mg/mL PEG-AuNPs. In these ticks, the midgut and rectal sac were clearly visible. Also, the midgut lumen volume was computed from segmented image data. The reduction in midgut volume was documented during the egg development process. According to this pilot study, micro-CT of ticks engorged on blood supplemented with contrasting agents in vitro may reveal additional information regarding the engorged ticks' anatomy.
- MeSH
- klíště * MeSH
- kovové nanočástice * MeSH
- krev MeSH
- rentgenová mikrotomografie metody MeSH
- stravovací zvyklosti MeSH
- zlato * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with "herring-bone" geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
- MeSH
- biokompatibilní materiály metabolismus MeSH
- cholestyraminová pryskyřice metabolismus MeSH
- fluidita membrány * MeSH
- fluorescenční polarizace MeSH
- laboratoř na čipu MeSH
- liposomy chemická syntéza MeSH
- mikrofluidika přístrojové vybavení metody MeSH
- nanostruktury * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.
- MeSH
- buněčná membrána účinky léků metabolismus ultrastruktura MeSH
- dynamický rozptyl světla MeSH
- elektronová mikroskopie MeSH
- fluorescence MeSH
- inflamasomy účinky léků imunologie metabolismus MeSH
- intravitální mikroskopie metody MeSH
- kathepsin B imunologie metabolismus MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- lyzozomy účinky léků imunologie metabolismus ultrastruktura MeSH
- mikroskopie atomárních sil MeSH
- nanodiamanty aplikace a dávkování chemie MeSH
- pinocytóza MeSH
- protein NLRP3 imunologie metabolismus MeSH
- THP-1 buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
- MeSH
- antigeny CD44 analýza metabolismus MeSH
- buněčné linie MeSH
- endocytóza MeSH
- fluorescenční barviva MeSH
- kyselina hyaluronová chemie metabolismus MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- lipidy chemická syntéza MeSH
- liposomy chemie terapeutické užití MeSH
- mikrofluidika MeSH
- nádory farmakoterapie MeSH
- protinádorové látky aplikace a dávkování MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- alergeny aplikace a dávkování imunologie MeSH
- aplikace slizniční MeSH
- imunologická tolerance MeSH
- lékové transportní systémy MeSH
- ovalbumin aplikace a dávkování imunologie MeSH
- prasata MeSH
- sublinguální imunoterapie metody MeSH
- ústní spodina MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
Liposomes are one of the most important drug delivery vectors, nowadays used in clinics. In general, polyethylene glycol (PEG) is used to ensure the stealth properties of the liposomes. Here, we have employed hydrophilic, biocompatible and highly non-fouling N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers containing hydrophobic cholesterol anchors for the surface modification of liposomes, which were prepared by the method of lipid film hydration and extrusion through 100 nm polycarbonate filters. Efficient surface modification of liposomes was confirmed by transmission electron microscopy, atomic force microscopy, and gradient ultracentrifugation. The ability of long-term circulation in the vascular bed was demonstrated in rabbits after i.v. application of fluorescently labelled liposomes. Compared to PEGylated liposomes, HPMA-based copolymer-modified liposomes did not induce specific antibody formation and did not activate murine and human complement. Compared with PEGylated liposomes, HPMA-based copolymer-modified liposomes showed a better long-circulating effect after repeated administration. HPMA-based copolymer-modified liposomes thus represent suitable new candidates for a generation of safer and improved liposomal drug delivery platforms.
- MeSH
- akrylamidy chemie MeSH
- aktivace komplementu účinky léků MeSH
- cholesterol chemie krev MeSH
- hydrofobní a hydrofilní interakce * MeSH
- králíci MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- liposomy * MeSH
- myši MeSH
- polyethylenglykoly * chemie MeSH
- polymery chemie MeSH
- povrchové vlastnosti * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.
- MeSH
- antigeny MeSH
- dendritické buňky MeSH
- HIV-1 * MeSH
- lidé MeSH
- liposomy metabolismus MeSH
- mannany metabolismus MeSH
- myši MeSH
- rekombinantní proteiny metabolismus MeSH
- vakcíny proti AIDS * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.
- Publikační typ
- časopisecké články MeSH
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
- MeSH
- diethylentriaminpentaacetát gadolinia * škodlivé účinky toxicita MeSH
- fibrinolytika MeSH
- fosfatidylethanolaminy * škodlivé účinky toxicita MeSH
- hepatocyty účinky léků MeSH
- inflamasomy MeSH
- kontrastní látky * MeSH
- kultivované buňky MeSH
- lidé MeSH
- liposomy * MeSH
- magnetická rezonanční tomografie * MeSH
- makrofágy účinky léků MeSH
- nanočástice MeSH
- nosiče léků * MeSH
- protein NLRP3 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH