Molecular transport Dotaz Zobrazit nápovědu
Journal of nephrology, ISSN 1121-8428 vol. 15, suppl. 5, March-April 2002
191 s. : il., tab. ; 28 cm
- MeSH
- acidobazická rovnováha fyziologie genetika MeSH
- biologický transport MeSH
- ledvinové kanálky fyziologie chemie MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- nefrologie
- biochemie
- fyziologie
Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.
- MeSH
- biologický transport MeSH
- kineziny * MeSH
- mikrotubuly * metabolismus MeSH
- mitochondrie metabolismus MeSH
- organely MeSH
- Publikační typ
- časopisecké články MeSH
The fibroblast growth factor receptors (FGFRs) are important oncogenes promoting tumor progression in many types of cancer, such as breast, bladder, and lung cancer as well as multiple myeloma and rhabdomyosarcoma. However, little is known about how these receptors are internalized and down-regulated in cells. We have here applied proximity biotin labeling to identify proteins involved in FGFR4 signaling and trafficking. For this purpose we fused a mutated biotin ligase, BirA*, to the C-terminal tail of FGFR4 (FGFR4-BirA*) and the fusion protein was stably expressed in U2OS cells. Upon addition of biotin to these cells, proteins in proximity to the FGFR4-BirA* fusion protein became biotinylated and could be isolated and identified by quantitative mass spectrometry. We identified in total 291 proteins, including 80 proteins that were enriched in samples where the receptor was activated by the ligand (FGF1), among them several proteins previously found to be involved in FGFR signaling (e.g., FRS2, PLCγ, RSK2 and NCK2). Interestingly, many of the identified proteins were implicated in endosomal transport, and by precise annotation we were able to trace the intracellular pathways of activated FGFR4. Validating the data by confocal and three-dimensional structured illumination microscopy analysis, we concluded that FGFR4 uses clathrin-mediated endocytosis for internalization and is further sorted from early endosomes to the recycling compartment and the trans-Golgi network. Depletion of cells for clathrin heavy chain led to accumulation of FGFR4 at the cell surface and increased levels of active FGFR4 and PLCγ, while AKT and ERK signaling was diminished, demonstrating that functional clathrin-mediated endocytosis is required for proper FGFR4 signaling. Thus, this study reveals proteins and pathways involved in FGFR4 transport and signaling that provide possible targets and opportunities for therapeutic intervention in FGFR4 aberrant cancer.
- MeSH
- barvení a značení MeSH
- biotinylace MeSH
- endocytóza MeSH
- endozomy metabolismus MeSH
- klathrin metabolismus MeSH
- lidé MeSH
- mikroskopie metody MeSH
- nádorové buněčné linie MeSH
- receptor fibroblastových růstových faktorů, typ 4 metabolismus MeSH
- signální transdukce MeSH
- trans-Golgiho síť metabolismus MeSH
- transport proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
XXIII, 681 s. : obr., tab., grafy ; 28 cm
- Konspekt
- Biologické vědy
- NLK Obory
- biologie
- patologie
- fyziologie
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae.
- MeSH
- aktivní transport MeSH
- fungální proteiny genetika metabolismus MeSH
- glykoproteiny genetika metabolismus MeSH
- kompartmentace buňky MeSH
- molekulární sekvence - údaje MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sacharidové sekvence MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
70 s.