Molecular visualization
Dotaz
Zobrazit nápovědu
elektronický časopis
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biologie
- oftalmologie
- histologie
- NLK Publikační typ
- elektronické časopisy
We provide a high-level survey of multiscale molecular visualization techniques, with a focus on application-domain questions, challenges, and tasks. We provide a general introduction to molecular visualization basics and describe a number of domain-specific tasks that drive this work. These tasks, in turn, serve as the general structure of the following survey. First, we discuss methods that support the visual analysis of molecular dynamics simulations. We discuss, in particular, visual abstraction and temporal aggregation. In the second part, we survey multiscale approaches that support the design, analysis, and manipulation of DNA nanostructures and related concepts for abstraction, scale transition, scale-dependent modeling, and navigation of the resulting abstraction spaces. In the third part of the survey, we showcase approaches that support interactive exploration within large structural biology assemblies up to the size of bacterial cells. We describe fundamental rendering techniques as well as approaches for element instantiation, visibility management, visual guidance, camera control, and support of depth perception. We close the survey with a brief listing of important tools that implement many of the discussed approaches and a conclusion that provides some research challenges in the field.
- MeSH
- Bacteria MeSH
- DNA ultrastruktura MeSH
- lidé MeSH
- molekulární modely MeSH
- nanostruktury * MeSH
- proteiny chemie MeSH
- simulace molekulární dynamiky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Summary: MolArt fills the gap between sequence and structure visualization by providing a light-weight, interactive environment enabling exploration of sequence annotations in the context of available experimental or predicted protein structures. Provided a UniProt ID, MolArt downloads and displays sequence annotations, sequence-structure mapping and relevant structures. The sequence and structure views are interlinked, enabling sequence annotations being color overlaid over the mapped structures, thus providing an enhanced understanding and interpretation of the available molecular data. Availability and implementation: MolArt is released under the Apache 2 license and is available at https://github.com/davidhoksza/MolArt. The project web page https://davidhoksza.github.io/MolArt/ features examples and applications of the tool.
Protein structure determines biological function. Accurately conceptualizing 3D protein/ligand structures is thus vital to scientific research and education. Virtual reality (VR) enables protein visualization in stereoscopic 3D, but many VR molecular-visualization programs are expensive and challenging to use; work only on specific VR headsets; rely on complicated model-preparation software; and/or require the user to install separate programs or plugins. Here we introduce ProteinVR, a web-based application that works on various VR setups and operating systems. ProteinVR displays molecular structures within 3D environments that give useful biological context and allow users to situate themselves in 3D space. Our web-based implementation is ideal for hypothesis generation and education in research and large-classroom settings. We release ProteinVR under the open-source BSD-3-Clause license. A copy of the program is available free of charge from http://durrantlab.com/protein-vr/, and a working version can be accessed at http://durrantlab.com/pvr/.
... Purification Using the QIAprep Spin Miniprep Kit and a Microcentrifuge 63 -- Contents -- Lab Session 8D Visualization ... ... -- Laboratory Exercise 68 -- Restriction Enzyme Analysis of Miniprep DNA 68 -- Lab Session 9B Visualization ... ... of Green Fluorescent Protein: Part 2 70 -- Introduction 70 -- Laboratory Exercise 70 -- Visualization ...
3rd ed. xxvi, 200 s. : il. ; 28 cm
- MeSH
- molekulární biologie MeSH
- proteinové inženýrství MeSH
- rekombinantní DNA MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- chemie, klinická chemie
- biologie
Motivation: Studying the transport paths of ligands, solvents, or ions in transmembrane proteins and proteins with buried binding sites is fundamental to the understanding of their biological function. A detailed analysis of the structural features influencing the transport paths is also important for engineering proteins for biomedical and biotechnological applications. Results: CAVER Analyst 2.0 is a software tool for quantitative analysis and real-time visualization of tunnels and channels in static and dynamic structures. This version provides the users with many new functions, including advanced techniques for intuitive visual inspection of the spatiotemporal behavior of tunnels and channels. Novel integrated algorithms allow an efficient analysis and data reduction in large protein structures and molecular dynamic simulations. Availability and implementation: CAVER Analyst 2.0 is a multi-platform standalone Java-based application. Binaries and documentation are freely available at www.caver.cz. Supplementary information: Supplementary data are available at Bioinformatics online.
BACKGROUND: Protein function is determined by many factors, namely by its constitution, spatial arrangement, and dynamic behavior. Studying these factors helps the biochemists and biologists to better understand the protein behavior and to design proteins with modified properties. One of the most common approaches to these studies is to compare the protein structure with other molecules and to reveal similarities and differences in their polypeptide chains. RESULTS: We support the comparison process by proposing a new visualization technique that bridges the gap between traditionally used 1D and 3D representations. By introducing the information about mutual positions of protein chains into the 1D sequential representation the users are able to observe the spatial differences between the proteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely for comparison of multiple proteins or a set of time steps of molecular dynamics simulation. CONCLUSIONS: The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare a set of proteins from the family of cytochromes P450 where the position of the secondary structures has a significant impact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a set of time steps our representation helps to reveal the most dynamically changing parts of the protein chain.
SUMMARY: The complexity of molecular networks makes them difficult to navigate and interpret, creating a need for specialized software. MINERVA is a web platform for visualization, exploration and management of molecular networks. Here, we introduce an extension to MINERVA architecture that greatly facilitates the access and use of the stored molecular network data. It allows to incorporate such data in analytical pipelines via a programmatic access interface, and to extend the platform's visual exploration and analytics functionality via plugin architecture. This is possible for any molecular network hosted by the MINERVA platform encoded in well-recognized systems biology formats. To showcase the possibilities of the plugin architecture, we have developed several plugins extending the MINERVA core functionalities. In the article, we demonstrate the plugins for interactive tree traversal of molecular networks, for enrichment analysis and for mapping and visualization of known disease variants or known adverse drug reactions to molecules in the network. AVAILABILITY AND IMPLEMENTATION: Plugins developed and maintained by the MINERVA team are available under the AGPL v3 license at https://git-r3lab.uni.lu/minerva/plugins/. The MINERVA API and plugin documentation is available at https://minerva-web.lcsb.uni.lu.
- MeSH
- software * MeSH
- systémová biologie * MeSH
- Publikační typ
- časopisecké články MeSH
... CONTENTS -- Part I Chemical and Molecular Foundations -- 1 LIFE BEGINS WITH CELLS -- Cells Grow and Divide ... ... , Shape, Location, and Movements of Cell Components 20 -- Biochemistry and Biophysics Reveal the Molecular ... ... Dipoles 37 -- The Hydrophobic Effect Causes Nonpolar -- Molecules to Adhere to One Another 38 -- Molecular ... ... and Degradation of Proteins is a Fundamental Property of Cells 86 -- The Proteasome Is a Complex Molecular ... ... Biology -- 4 BASIC MOLECULAR GENETIC -- MECHANISMS 111 -- ? ...
6th ed. xxxvii, 1150 s. : il., tab. ; 29 cm
- MeSH
- biologie buňky MeSH
- molekulární biologie MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biologie
- cytologie, klinická cytologie
Protein structures contain highly complex systems of voids, making up specific features such as surface clefts or grooves, pockets, protrusions, cavities, pores or channels, and tunnels. Many of them are essential for the migration of solvents, ions and small molecules through proteins, and their binding to the functional sites. Analysis of these structural features is very important for understanding of structure-function relationships, for the design of potential inhibitors or proteins with improved functional properties. Here we critically review existing software tools specialized in rapid identification, visualization, analysis and design of protein tunnels and channels. The strengths and weaknesses of individual tools are reported together with examples of their applications for the analysis and engineering of various biological systems. This review can assist users with selecting a proper software tool for study of their biological problem as well as highlighting possible avenues for further development of existing tools. Development of novel descriptors representing not only geometry, but also electrostatics, hydrophobicity or dynamics, is needed for reliable identification of biologically relevant tunnels and channels.