This study aimed to develop a vancomycin population pharmacokinetic model in obese adult patients treated with intermittent haemodialysis and propose a model-based loading dose strategy ensuring attainment of newly recommended AUC-based PK/PD target. Retrospective cross-sectional analysis was performed among obese haemodialysis dependent adult patients treated with intravenous vancomycin. A pharmacokinetic population model was developed using a nonlinear mixed-effects modelling approach and Monte Carlo simulations were used to identify the optimal loading dose for PK/PD target attainment during the first 48 h of treatment. Therapeutic drug monitoring data from 27 patients with a BMI of 30.2-52.9 kg/m2 were analysed. Among all tested variables, only LBM as a covariate of vancomycin Vd significantly improved the model, while vancomycin CL did not correlate with any of the tested variables. The median (IQR) value from the conditional mean of individual estimates of Vd and CL was 68.4 (56.6-84.2) L and 0.86 (0.79-0.90) L/h, respectively. To ensure optimal vancomycin exposure during the first 48 h of therapy, the vancomycin loading dose of 1500, 1750, 2000, 2250, 2500 and 2750 mg should be administered to obese patients with a lean body mass of ˂50, 50-60, 60-70, 70-80, 80-85 and >85 kg, respectively.
- MeSH
- Anti-Bacterial Agents * pharmacokinetics administration & dosage MeSH
- Models, Biological MeSH
- Renal Dialysis * MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Monte Carlo Method MeSH
- Drug Monitoring MeSH
- Obesity * complications MeSH
- Cross-Sectional Studies MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Vancomycin * pharmacokinetics administration & dosage MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
PURPOSE: With the increasing use of proton therapy, there is a growing emphasis on including radiation quality, often quantified by linear energy transfer, as a treatment plan optimization factor. The Timepix detectors offer energy-sensitive particle tracking useful for the characterization of proton linear energy transfer. To improve the detector's performance in mixed radiation fields produced in proton therapy, we customized the detector settings and performed the per-pixel energy calibration. METHODS: The detection threshold and per-pixel signal shaping time (IKrum current) were customized, and energy calibration was performed for MiniPIX Timepix3. The detector calibration was verified using α source and clinical proton beams, as well as Monte Carlo simulations. The effects on the detector's performance, in terms of spectral saturation and pixel occupancy, were evaluated. RESULTS: Measurements with proton beams showed a good agreement with simulations. With the customized settings, the measurable energy range in the detector data-driven mode was extended, and the signal duration time was reduced by 80%, while the yield of pixel time occupancy reduction depends on the number of occupied pixels. For performed measurements with proton beams, the number of occupied pixels was further reduced up to 40% due to the increased threshold. CONCLUSIONS: Customized detector configuration of the Timepix3 detector allowed for reduced pixel occupancy and mitigation of signal saturation in a data-driven mode without significantly interfering with the energy deposition measurement. The presented approach enables the extension of the operational range, including higher intensities and mixed-radiation fields in particle radiotherapy environments.
- MeSH
- Calibration MeSH
- Linear Energy Transfer MeSH
- Monte Carlo Method * MeSH
- Proton Therapy * instrumentation MeSH
- Publication type
- Journal Article MeSH
We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.e. neutron physical interactions with biological tissues. To this aim, we combined the simulation of radiation transport through biological matter, performed with the Monte Carlo code PHITS, and the prediction of DNA damage using analytical formulas, which ground on a large database of biophysical radiation track structure simulations performed with the code PARTRAC. In particular, two classes of DNA damage were considered: sites and clusters of double-strand breaks (DSBs), which are known to be correlated with cell fate following radiation exposure. Within a coherent modelling framework, this approach tackles the variation of neutron RBE in a wide energy range, from thermal neutrons to neutrons of hundreds of GeV, and reproduces effects related to depth in the human-sized receptor, as well as to the receptor size itself. Besides providing a better mechanistic understanding of neutron biological effectiveness, the new model can support better-informed decisions for radiation protection: indeed, current neutron weighting (ICRP)/quality (U.S. NRC) factors might be insufficient for use in some radiation protection applications, because they do not account for depth. RBE predictions obtained with the reported model were successfully compared to the currently adopted radiation protection standards when the depth information is not relevant (at the shallowest depth in the phantom or for very high energy neutrons). However, our results demonstrate that great care is needed when applying weighting factors as a function of incident neutron energy only, not explicitly considering RBE variation in the target. Finally, to facilitate the use of our results, we propose look-up RBE tables, explicitly considering the depth variable, and an analytical representation of the maximal RBE vs. neutron energy.
NASA has encouraged studies on 226Ra deposition in the human brain to investigate the effects of exposure to alpha particles with high linear energy transfer, which could mimic some of the exposure astronauts face during space travel. However, this approach was criticized, noting that radium is a bone-seeker and accumulates in the skull, which means that the radiation dose from alpha particles emitted by 226Ra would be heavily concentrated in areas close to cranial bones rather than uniformly distributed throughout the brain. In the high background radiation areas of Ramsar, Iran, extremely high levels of 226Ra in soil contribute to a large proportion of the inhabitants' radiation exposure. A prospective study on Ramsar residents with a calcium-rich diet was conducted to improve the dose uniformity due to 226Ra throughout the cerebral and cerebellar parenchyma. The study found that exposure of the human brain to alpha particles did not significantly affect working memory but was significantly associated with increased reaction times. This finding is crucial because astronauts on deep space missions may face similar cognitive impairments due to exposure to high charge and energy particles. The current study was aimed to evaluate the validity of the terrestrial model using the Geant4 Monte Carlo toolkit to simulate the interactions of alpha particles and representative cosmic ray particles, acknowledging that these radiation types are only a subset of the complete space radiation environment.
- MeSH
- DNA MeSH
- Humans MeSH
- Linear Energy Transfer MeSH
- Monte Carlo Method MeSH
- Brain MeSH
- Prospective Studies MeSH
- Radium * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: In-vivo monitoring methods of carbon ion radiotherapy (CIRT) includes explorations of nuclear reaction products generated by carbon-ion beams interacting with patient tissues. Our research group focuses on in-vivo monitoring of CIRT using silicon pixel detectors. Currently, we are conducting a prospective clinical trial as part of the In-Vivo Monitoring project (InViMo) at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. We are using an innovative, in-house developed, non-contact fragment tracking system with seven mini-trackers based on the Timepix3 technology developed at CERN. PURPOSE: This article focuses on the implementation of the mini-tracker in Monte Carlo (MC) based on FLUKA simulations to monitor secondary charged nuclear fragments in CIRT. The main objective is to systematically evaluate the simulation accuracy for the InViMo project. METHODS: The implementation involved integrating the mini-tracker geometry and the scoring mechanism into the FLUKA MC simulation, utilizing the finely tuned HIT beam line. The systematic investigation included varying mini-tracker angles (from 15∘$15^\circ$ to 45∘$45^\circ$ in 5∘$5^\circ$ steps) during the irradiation of a head-sized phantom with therapeutic carbon-ion pencil beams. To evaluate our implemented FLUKA framework, a comparison was made between the experimental data and data obtained from MC simulations. To ensure the fidelity of our comparison, experiments were performed at the HIT using the parameters and setup established in the simulations. RESULTS: Our research demonstrates high accuracy in reproducing characteristic behaviors and dependencies of the monitoring method in terms of fragment distributions in the mini-tracker, track angles, emission profiles, and fragment numbers. Discrepancies in the number of detected fragments between the experimental data and the data obtained from MC simulations are less than 4% for the angles of interest in the InViMo detection system. CONCLUSIONS: Our study confirms the potential of our simulation framework to investigate the performance of monitoring inter-fractional anatomical changes in patients undergoing CIRT using secondary nuclear charged fragments escaping from the irradiated patient.
- MeSH
- Phantoms, Imaging MeSH
- Humans MeSH
- Monte Carlo Method * MeSH
- Heavy Ion Radiotherapy * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
Purpose: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. Materials and Methods: A total of 146 patients with PCa recruited in a pilot study of a prospective clinical trial (NCT02659527) were retrospectively included in the side study, all of whom underwent 68Ga-PSMA-11 integrated positron emission tomography (PET) / magnetic resonance (MR) before radical prostatectomy (RP) between May 2014 and April 2020. To establish a multiomics ML model, we quantified PET radiomics features, pathway-level genomics features from whole exome sequencing, and pathomics features derived from immunohistochemical staining of 11 biomarkers. Based on the multiomics dataset, five ML models were established and validated using 100-fold Monte Carlo cross-validation. Results: Among five ML models, the random forest (RF) model performed best in terms of the area under the curve (AUC). Compared to bxGG assessment alone, the RF model was superior in terms of AUC (0.87 vs 0.75), specificity (0.72 vs 0.61), positive predictive value (0.79 vs 0.75), and accuracy (0.78 vs 0.77) and showed slightly decreased sensitivity (0.83 vs 0.89) and negative predictive value (0.80 vs 0.81). Among the feature categories, bxGG was identified as the most important feature, followed by pathomics, clinical, radiomics and genomics features. The three important individual features were bxGG, PSA staining and one intensity-related radiomics feature. Conclusion: The findings demonstrate a superior assessment of the developed multiomics-based ML model in whole-mount GG compared to the current clinical baseline of bxGG. This enables personalized patient management by identifying high-risk PCa patients for RP.
- MeSH
- Genomics methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Multiomics MeSH
- Prostatic Neoplasms * surgery pathology genetics diagnostic imaging MeSH
- Pilot Projects MeSH
- Positron-Emission Tomography methods MeSH
- Prospective Studies MeSH
- Prostatectomy * methods MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Machine Learning * MeSH
- Neoplasm Grading * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
AIMS: Abiraterone treatment requires regular drug intake under fasting conditions due to pronounced food effect, which may impact patient adherence. The aim of this prospective study was to evaluate adherence to abiraterone treatment in patients with prostate cancer. To achieve this aim, an abiraterone population pharmacokinetic model was developed and patients' adherence has been estimated by comparison of measured levels of abiraterone with population model-based simulations. METHODS: A total of 1469 abiraterone plasma levels from 83 healthy volunteers collected in a bioequivalence study were analysed using a nonlinear mixed-effects model. Monte Carlo simulation was used to describe the theoretical distribution of abiraterone pharmacokinetic profiles at a dose of 1000 mg once daily. Adherence of 36 prostate cancer patients treated with abiraterone was then evaluated by comparing the real abiraterone concentration measured in each patient during follow-up visit with the theoretical distribution of profiles based on simulations. Patients whose abiraterone levels were ˂5th or ˃95th percentile of the distribution of simulated profiles were considered to be non-adherent. RESULTS: Based on this evaluation, 13 patients (36%) have been classified as non-adherent. We observed significant association (P = .0361) between richness of the breakfast and rate of non-adherence. Adherent patients reported significantly better overall condition in self-assessments (P = .0384). A trend towards a higher occurrence of adverse effects in non-adherent patients was observed. CONCLUSIONS: We developed an abiraterone population pharmacokinetic model and proposed an advanced approach to medical adherence evaluation. Due to the need for administration under fasting conditions, abiraterone therapy is associated with a relatively high rate of non-adherence.
- MeSH
- Medication Adherence * statistics & numerical data MeSH
- Androstenes * pharmacokinetics administration & dosage therapeutic use MeSH
- Models, Biological * MeSH
- Adult MeSH
- Food-Drug Interactions MeSH
- Middle Aged MeSH
- Humans MeSH
- Monte Carlo Method MeSH
- Prostatic Neoplasms * drug therapy MeSH
- Fasting MeSH
- Prospective Studies MeSH
- Antineoplastic Agents pharmacokinetics administration & dosage MeSH
- Aged MeSH
- Therapeutic Equivalency MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
Objective.There is an increasing interest in calculating and measuring linear energy transfer (LET) spectra in particle therapy in order to assess their impact in biological terms. As such, the accuracy of the particle fluence energy spectra becomes paramount. This study focuses on quantifying energy depositions of distinct proton, helium, carbon, and oxygen ion beams using a silicon pixel detector developed at CERN to determine LET spectra in silicon.Approach.While detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data with high spatial and temporal resolution remains an issue. This gap is where silicon pixel detector technology steps in, enabling online tracking of single-ion energy deposition. The used detector consisted of a 300μm thick silicon sensor operated in partial depletion.Main results.During post-processing, artifacts in the acquired signals were identified and methods for their corrections were developed. Subsequently, a correlation between measured and Monte Carlo-based simulated energy deposition distributions was performed, relying on a two-step recalibration approach based on linear and saturating exponential models. Despite the observed saturation effects, deviations were confined below 7% across the entire investigated range of track-averaged LET values in silicon from 0.77 keVμm-1to 93.16 keVμm-1.Significance.Simulated and measured mean energy depositions were found to be aligned within 7%, after applying artifact corrections. This extends the range of accessible LET spectra in silicon to clinically relevant values and validates the accuracy and reliability of the measurements. These findings pave the way towards LET-based dosimetry through an approach to translate these measurements to LET spectra in water. This will be addressed in a future study, extending functionality of treatment planning systems into clinical routine, with the potential of providing ion-beam therapy of utmost precision to cancer patients.
- MeSH
- Silicon MeSH
- Linear Energy Transfer * MeSH
- Monte Carlo Method MeSH
- Radiometry instrumentation MeSH
- Publication type
- Journal Article MeSH
AIM: The aim of this study was to develop a vancomycin population pharmacokinetic model in adult obese patients and propose covariate-based dosing individualization in order to maximize the achievement of the newly recommended PK/PD target, according to a revised consensus guideline from 2020. METHODS: Therapeutic drug monitoring data from initial vancomycin therapy (first 3 days of treatment) in adult obese (BMI ≥ 30 kg/m2) patients from 2013 to 2022 were analyzed using a non-linear mixed-effects modeling method, and Monte Carlo simulations were then used to find the optimal dosage maximizing the PK/PD target attainment. RESULTS: A total of 147 vancomycin serum levels obtained from 138 patients were included in the analysis. Based on the covariate model diagnosis among all tested variables, no reliable predictor of vancomycin volume of distribution (Vd) was identified, while clearance (CL) was positively correlated with eGFR and lean body mass. Creatinine-based eGFR predicted vancomycin CL better than cystatin C-based eGFR. The median (interquartile range) value from conditional modes of individual estimates of Vd, CL, and elimination half-life in our population was 74.0 (70.5-75.4) L, 6.65 (4.95-8.42) L/h, and 7.7 (6.0-10.0) h, respectively. CONCLUSION: We proposed dosing individualization based on the covariate found in order to maximize the achievement of the newly recommended PK/PD target of the AUC/MIC ratio of 400-600. Clinical pharmacy/pharmacology interventions may lead to an improvement in vancomycin dosing with a reflection in PK/PD target attainment.
- Publication type
- Journal Article MeSH