Scherer, Steven E*
Dotaz
Zobrazit nápovědu
Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.
- MeSH
- Charcotova-Marieova-Toothova nemoc genetika MeSH
- dítě MeSH
- dominantní geny * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mutace genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvence aminokyselin MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- sodíko-draslíková ATPasa chemie genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
PURPOSE: Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS: Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS: Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION: Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.
- MeSH
- čipová analýza tkání MeSH
- cytogenetika MeSH
- dítě MeSH
- hodnocení rizik MeSH
- hybridizace in situ fluorescenční MeSH
- jaderné proteiny genetika MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 11 MeSH
- lidské chromozomy, pár 14 MeSH
- meduloblastom genetika mortalita patologie terapie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádorové biomarkery genetika MeSH
- prediktivní hodnota testů MeSH
- předškolní dítě MeSH
- prognóza MeSH
- proporcionální rizikové modely MeSH
- proteiny hedgehog * genetika MeSH
- proteiny Wnt * genetika MeSH
- protoonkogenní proteiny c-myc genetika MeSH
- regulace genové exprese u nádorů MeSH
- reprodukovatelnost výsledků MeSH
- rizikové faktory MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory Krüppel-like genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [rg ], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from ~2400 to ~537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (rg = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (rg = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (rgs = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
- MeSH
- alkoholismus genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární genetika MeSH
- fenotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- poruchy příjmu potravy genetika MeSH
- poruchy spojené s užíváním psychoaktivních látek genetika MeSH
- poruchy vyvolané užíváním tabáku genetika MeSH
- rizikové faktory MeSH
- schizofrenie genetika MeSH
- vazebná nerovnováha MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
- MeSH
- Aspirin farmakologie terapeutické užití MeSH
- kolorektální nádory farmakoterapie MeSH
- lidé MeSH
- mendelovská randomizace metody MeSH
- proteomika metody MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
- MeSH
- celogenomová asociační studie metody MeSH
- dospělí MeSH
- elektrokardiografie metody MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- myokard metabolismus MeSH
- náhlá srdeční smrt etiologie MeSH
- senioři MeSH
- srdeční arytmie genetika metabolismus MeSH
- srdeční komory metabolismus MeSH
- syndrom dlouhého QT genetika metabolismus MeSH
- vápníková signalizace genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and secondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR analysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the activity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes' coding regions; and (3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR: 1.03, 95% CI: 0.84-1.27 and OR: 1.08, 95% CI: 0.86-1.34, respectively). Results remained unchanged upon aspirin use stratification. We found little evidence to suggest that an SD increase in genetically predicted SA protects against CRC risk in the general population and upon stratification by aspirin use.
- MeSH
- Aspirin terapeutické užití MeSH
- celogenomová asociační studie MeSH
- dieta MeSH
- genotypizační techniky MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory krev epidemiologie genetika prevence a kontrola MeSH
- kyselina salicylová aplikace a dávkování krev MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.